高速列车转向架区域裙板对流场与气动噪声的影响
CSTR:
作者:
作者单位:

同济大学 上海地面交通工具风洞中心 铁道与城市轨道交通研究院,同济大学 上海地面交通工具风洞中心,同济大学 上海地面交通工具风洞中心,同济大学 上海地面交通工具风洞中心,同济大学 上海地面交通工具风洞中心

中图分类号:

U270.1

基金项目:

国家重点研发计划课题(2016YFB1200503-04); 上海市地面交通工具空气动力与热环境模拟重点实验室开放课题基金资助(VATLAB-2016-03)


Effect of Bogie Fairing on Flow and Aerodynamic Noise Behaviour Around Bogie of HighSpeed Train
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    运用声学比拟理论,采用1∶10简化模型对高速列车转向架部位气动噪声进行数值计算,并分析裙板对转向架部位流动与气动噪声性能的影响.基于延迟分离涡模型数值求解NavierStokes方程获得近场流场,运用考虑对流效应的Ffowcs WilliamsHawkings方程的声预测程序进行远场声辐射计算.结果表明,由于转向架舱在车体侧墙与底部形成表面不连续结构,流体通过转向架部位时产生了不同尺度和方向的复杂涡结构,上游几何体周围产生的涡向下游传播并与下游几何体相互作用,从而在转向架后端形成高湍流度尾流区.转向架区域外侧安装裙板后,流体与转向架舱的相互作用被削弱.靠近转向架并与车体侧墙平行的可穿透积分面的噪声预测结果显示,裙板可以在较宽频段内有效降低转向架部位的气动噪声.

    Abstract:

    The influence of a bogie fairing on the aerodynamic and aeroacoustic behaviour of flow past a simplified highspeed train bogie located in a bogie cavity at a scale of 1∶10 was studied using a twostage hybrid method comprising computational fluid dynamics and acoustic analogy. The nearfield unsteady flow was obtained by solving the NavierStokes equations numerically with the delayed detachededdy model and the results are used to calculate the farfield noise through a noise prediction code based on the convective Ffowcs WilliamsHawkings method. It is found that due to the surface shape discontinuity in the bogie cavity along the carbody side and bottom walls, a highly turbulent flow is generated within the bogie cavity. The vortices formed behind the upstream geometries are convected downstream and impinge on the downstream bodies, generating a highly turbulent wake behind the bogie. When the fairing is mounted around the bogie cavity, the interaction between the flow and the bogie cavity is reduced. The results show that the bogie fairing is effective in reducing the noise generated in most of the frequency range for the current model case based on predictions of the noise radiated to the trackside using a permeable data surface close to the bogie and parallel to the carbody side wall.

    参考文献
    [1] THOMPSON D J, LATORRE IGLESIAS E, LIU X W, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains[J]. International Journal of Rail Transportation, 2015, 3(3): 119-150.
    [2] THOMPSON D J. Railway noise and vibration: mechanisms, modelling and means of control[M]. Elsevier, Oxford, UK, 2008.
    [3] 刘加利,张继业,张卫华. 高速列车车头的气动噪声数值分析[J]. 铁道学报,2011,33(9):19-26.
    LIU Jiali, ZHANG Jiye, ZHANG Weihua. Numerical analysis on aerodynamic noise of the high-speed train head[J]. Journal of the China railway society, 2011, 33(9): 19-26.
    [4] NAGAKURA K. Localization of aerodynamic noise sources of Shinkansen trains[J]. Journal of Sound and Vibration, 2006, 293: 547-556.
    [5] 朱剑月,景建辉. 高速列车气动噪声的研究与控制[J]. 国外铁道车辆,2011,48(5):1-8.
    ZHU Jianyue, JING Jianhui. Research and control of aerodynamic noise in high speed trains [J]. Foreign Rolling Stock, 2011, 48(5): 1-8.
    [6] LATORRE IGLESIAS E, THOMPSON D J, Smith M G, et al. Anechoic wind tunnel tests on high-speed train[C]. Proc. 7th Forum Acusticum 2014, Krakow, Poland.
    [7] FREMION N, VINCENT N, JACOB M, et al. Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train[J]. Journal of Sound and Vibration, 2000, 231(3): 577-593.
    [8] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267: 447-468.
    [9] ZHU J Y, HU Z W, THOMPSON D J. Flow simulation and aerodynamic noise prediction for a high-speed train wheelset[J]. International Journal of Aeroacoustics, 2014, 13(7&8): 533-552.
    [10] ZHU J Y, HU Z W, THOMPSON D J. Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1642–1658.
    [11] ZHU J Y, HU Z W, THOMPSON D J. The effect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie[J]. International Journal of Rail Transportation, DOI: 10.1080/23248378.2016.1212677, Published online: 27 Jul 2016.
    [12] 肖友刚,康志成. 高速列车车头曲面气动噪声的数值预测[J]. 中南大学学报,2008,39(6):1267-1272.
    XIA0 Yougang, KANG Zhicheng. Numerical prediction of aerodynamic noise radiated from high speed train head surface[J]. Journal of Central South University, 2008, 39(6): 1267-1272.
    [13] 张军,孙帮成,郭涛,等. 高速列车整车气动噪声及分布规律研究[J]. 铁道学报,2015,37(2):10-17.
    ZHANG Jun, SUN Bangcheng, GUO Tao, et al. Research on aerodynamic noise radiated from whole body surface of high-speed train and its distribution[J]. Journal of the China railway society, 2015, 37(2): 10-17.
    [14] 黄莎,杨明智,李志伟,等. 高速列车转向架部位气动噪声数值模拟及降噪研究[J]. 中南大学学报,2011,42(12):3899-3904.
    HUANG Sha, YANG Mingzhi, LI Zhiwei, et al. Aerodynamic noise numerical simulation and noise reduction of high speed train bogie section[J]. Journal of Central South University, 2011, 42(12): 3899-3904.
    [15] MESKINE M, PéROT F, KIM M S, et al. Community noise prediction of digital high speed train using LBM[C]. AIAA Paper 2013-2015, 19thAIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 2013.
    [16] SCHULTE-WERNING B. Research of European railway operators to reduce the environmental impact of high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2003, 217(4): 249-257.
    [17] TORII A, ITO J. Development of the series 700 Shinkansen train-set, improvement of noise level[C]. Proceedings of World Congress on Railway Research 1999, Tokyo, Japan, 1999.
    [18] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195.
    [19] FFOWCS-WILLIAMS J E, HAWKINGS D L. Sound radiation from turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, 1969, 342: 264-321.
    [20] BRENTNER K S, FARASSAT F. Modelling aerodynamically generated sound of helicopter rotors[J]. Progress in Aerospace Sciences, 2003, 39: 83-120.
    [21] NAJAFI-YAZDI A, BRèS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society of London, Series A, 2011, 467: 144-165.
    [22] LIGHTHILL M J. On sound generation aerodynamically. ?. General theory[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
    [23] FARASSAT F. Derivation of Formulations 1 and 1A of Farassat[C]. NASA/TM-214853, 2007.
    [24] GARRICK I E, WATKINS E W. A theoretical study of the effect of forward speed on the free-space sound-pressure field around propellers[C]. NASA/TM-79844, 1954.
    [25] ZHU J Y. Aerodynamic Noise of High-speed Train Bogies[D]. PhD Thesis. University of Southampton, 2015.
    引证文献
引用本文

朱剑月,王毅刚,杨志刚,李启良,陈羽.高速列车转向架区域裙板对流场与气动噪声的影响[J].同济大学学报(自然科学版),2017,45(10):1512~1521

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-14
  • 最后修改日期:2017-07-11
  • 录用日期:2017-05-24
  • 在线发布日期: 2017-10-24
文章二维码