基于可变形部件模型的遥感影像船只检测方法
CSTR:
作者:
作者单位:

同济大学测绘与地理信息学院、智能型新能源汽车协同创新中心,同济大学测绘与地理信息学院,中国公路工程咨询集团有限公司,同济大学测绘与地理信息学院

中图分类号:

P208

基金项目:

高分综合交通遥感应用示范系统(一期)(07-Y30B10-9001-14/16)


Ship Detection in Highresolution Remote Sensing Images Based on Deformable Part Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种基于混合可变形部件模型的船只检测方法.该方法采用基于梯度方向直方图(HOG)特征的可变形部件模型(DPM)来描述船只,在HOG特征金字塔空间通过滑窗方式检测目标.基于HOG特征的DPM不具有方向不变性,因此根据船只目标特点,分别从模型训练阶段和目标检测阶段进行改进.在模型训练阶段,为了减少模板数量,将所有船只样本旋转到相同方向进行参数学习;在目标检测阶段,将兴趣区旋转至特定方向后进行模板匹配,实现遥感影像上任意方向的船只检测.利用该方法在高分二号光学遥感影像上进行船只检测,实验结果表明此方法可以有效检测船只.

    Abstract:

    A method of ship detection in highresolution remote sensing images using mixture of deformable part models(DPMs) is proposed in this paper. The method is robust to size difference by constructing multiscale histogram of oriented gradients (HOG) feature pyramids. Deformable part models are introduced to deal with the deformation of the key parts of ships. And a sliding window detection strategy is adopted to separate the clustered ships. Considering that HOG features are orientationsensitive, improved training and detection methods are also proposed. In the training phase, all the samples are rotated to the same direction for parameter learning to reduce the number of templates. In the detection phase, the regions of interest are rotated to a specific direction to implement template matching. The experiments of ship detection in GaoFen2 highresolution remote sensing images are carried out. It is shown that the proposed method is effective.

    参考文献
    [1]Klepko R. Classification of SAR Ship Images with the Aid of a Syntactic Pattern Recognition Algori-thm [R]. DREO Technical note 91-10,1991.
    [2]Menon M. M., Boudreau E. R., Kolodzy P. J. An Automatic Ship Classification System for ISAR Imagery [J]. The Lincoln Labotatory Journal, 1993, 6(2): 289-308.
    [3]Tello M., Lopez-Martinez C., Mallorquij. A novel algorithm for ship detection in SAR imagery based on the wavelet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):201-205.
    [4]汪闽,骆剑承,明冬萍.高分辨率遥感影像基于形状特征的船舶提取[J].武汉大学学报(信息科学版),2005,30(8):685-688.Wang Min, Luo Jiancheng, Ming Dongping. Extract Ship Targets from High Spatial Resolution Remote Sensed Imagery with Shape Feature[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8):685-688.
    [5]蒋李兵.基于高分辨率光学遥感图像的舰船目标检测方法研究[D].国防科技大学,中国,2006.Jiang Libing. Research on the Ship Target Detection in High Spatial Resolution Optical Remote Sensing Image [D]. National University of Defense Technology, China, 2006.
    [6]王彦情、马雷、田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029-1039.Wang Yanqing, Ma Lei, Tian Yuan. State-of-the -art of Ship Detection and Recognition in Optical Remotely Sensed Imagery[J]. ACTA Automatica Sinica, 2011, 37(9):1029-1039.
    [7]高立宁,毕福昆,龙腾,等.一种光学遥感图像海面舰船检测算法[J].清华大学学报:自然科学版,2011(1):105-110.Gao Lining, Bi Fukun, Long Teng, et al. Ship detection algorithm for optical remote sensing images[J]. Tsinghua Univ(Sci Tech), 2011(1): 105-110
    [8]许军毅.光学卫星遥感图像舰船目标检测技术研究[D].国防科技大学,2011Xu Junyi. The Study of Ship Target Detection in Optical Satellite Remote Sensing Images[D]. National University of Defense Technology, China, 2011.
    [9]李建,陈晓玲,刘子潇等.HJ-1光学遥感影像船只检测—以鄱阳湖为例,武汉大学学报(信息科学版)2015,40(6):727-731.Li Jian, Chen Xiaoling, Liu Zixiao, et al. Detection of Ships in Homogeneous Regions from HJ-1 Optical Remote Sensing Images: A Case Study at the Poyang Lake [J]. Geomatics and Information Science of Wuhan University, 2015,40(6): 727-731.
    [10]Fischler M., Elschlager R. The Representation and Matching of Pictorial Structures [J], IEEE Transactions on Computer, 1973, 22(1): 67-92.
    [11]Bar-Hillel A., Hertz T., Weinshall D. Object class recognition by boosting a part-based model [C]. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , San Diego, CA, 20-26 June, 2005, pp. 702-709.
    [12]Felzenszwalb P.F., Huttenlocher D.P. Pictorial structures for object recognition [J]. International Journal of Computer Vision, 2005, 61 (1), 55-79.
    [13]Felzenszwalb P., Mcallester D., Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part Model [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
    [14]Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D., Object detection with discriminatively trained part-based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9):1627-1645.
    [15]Dalal N., TRIGGS B. Histograms of Oriented Gradients for Human Detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2005, 1(12):886-893.
    [16]Cheng Gong, Han Junwei, Guo LEI, et al. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. Journal of Photogrammetry and Remote Sensing, 2013(85):32-43.
    相似文献
    引证文献
引用本文

张绍明,徐昆源,张鹏,王建梅.基于可变形部件模型的遥感影像船只检测方法[J].同济大学学报(自然科学版),2017,45(12):1887~

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-12-19
  • 最后修改日期:2017-03-10
  • 录用日期:2017-11-14
  • 在线发布日期: 2017-12-29
文章二维码