基于移动最小二乘法的轨迹拟合切线方位角计算
CSTR:
作者:
作者单位:

同济大学测绘与地理信息学院,同济大学测绘与地理信息学院

中图分类号:

P204

基金项目:

“十三五”国家重点研发计划任务(2016YFB1200602-02);国家自然科学基金(41771482)


Trajectory Tangent Azimuth Calculation Based on Moving Least Square Fitting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于移动最小二乘法,提出了轨迹切线方位角算法.利用实测数据验证了算法的可行性,并对算法关键参数(紧支系数与权函数)的设置进行了讨论.结果表明:该方法简单易行,适用于形状弯曲较小的轨迹;移动最小二乘法中的紧支系数应满足计算的需求,但不宜过大;权函数能提高拟合精度,但对轨迹切线方位角的精度几乎没有影响.

    Abstract:

    Based on moving least squares, an algorithm of trajectory tangent azimuth calculation is presented in this paper. The feasibility of the algorithm is tested by measured data and the setting of key parameters including dilatation parameter and weight function is discussed. The results show: the algorithm is practical and can be applied to small bended trajectory; the value of dilatation parameter should satisfy the requirement of calculation, but it should not be too big; the precision of trajectory fitting can be promoted by weight function but the precision of azimuth will not be affected.

    参考文献
    [1]Paul D.Groves. GNSS与惯性及多传感器组合导航系统原理[M]. 国防工业出版社, 2015: 175.Paul D.Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems[M]. National Defense Industry Press, 2015: 175.
    [2]张玲. 基于三次样条曲线拟合公路平面线形方法研究[D]. 武汉: 武汉理工大学, 2007: 17-18.ZHANG ling. Analysis of Fitting Method on Plan Curve Based on Cubic Spline[D]. Wuhan: Wuhan University of Technology, 2007: 17-18.
    [3]姚连璧, 周小平. 基于MATLAB的控制网平差程序设计[M]. 同济大学出版社, 2006: 197.YAO lianbi, ZHOU xiaoping. Design of Control Net Adjustment Software Based on MATLAB[M]. Tongji University Press, 2006: 197.
    [4]曾清红,卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004(1): 84-88.CENG qinghon, LU detang. Curve and Surface Fitting Based on Moving Least Squares[J]. Journal of Engineering Graphics, 2004(1): 84-88.
    [5]齐林,张芳,陈恩庆.基于移动最小二乘曲线拟合的 LFM信号参数估计[J].郑州大学学报(工学版), 2011(3): 95-98.QI lin, ZHANG fang, CHEN enqing. Parameter Estimation of LFM Signal Via MLS Approximation[J]. Journal of Zhengzhou University(Engineering Science), 2011(3): 95-98.
    [6]D.Shepard. A two dimensional interpolation function for irregularly spaced data[C]. Proceedings of the Twenty Third ACM National Conference, New York, USA, 1968: 517-524.
    [7]P.Lancaster,K.alkauskas. Curve and Surface Fitting[C]. Academic Press, New York,1986.
    [8]程玉民. 移动最小二乘法研究进展与述评[J]. 计算机辅助工程, 2009(6): 5-11.CHENG yumin. Advances and Review on moving least square methods[J]. Computer Aided Engineering, 2009(6): 5-11.
    [9]M.Amirfakhrian, H.Mafikandi. Approximation of parametric curves by Moving Least Squares method[J]. Applied Mathematics and Computation, 2016(283), June, 290-298.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚连璧,钱瑾斐.基于移动最小二乘法的轨迹拟合切线方位角计算[J].同济大学学报(自然科学版),2018,46(11):1589~1593

复制
分享
文章指标
  • 点击次数:1523
  • 下载次数: 900
  • HTML阅读次数: 697
  • 引用次数: 0
历史
  • 收稿日期:2017-01-16
  • 最后修改日期:2018-09-13
  • 录用日期:2018-09-03
  • 在线发布日期: 2018-11-29
文章二维码