多因子模型下担保债务凭证拉普拉斯定价方法
CSTR:
作者:
作者单位:

同济大学经济与管理学院,同济大学经济与管理学院,同济大学经济与管理学院

中图分类号:

F830.9

基金项目:


CDO pricing based on Laplace Transform in Multifactor Models
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    担保债务凭证(CDOs)的基础资产池复杂相关性通常需要多因子Copula模型拟合,但蒙特卡洛模拟对于多因子模型的计算效率不高,难以准确估计大额损失事件的发生概率及预期损失。Laplace逆变换数值方法适用于风险管理中的多因子Copula模型,通过逆变换数值方法计算资产条件损失的Laplace变换卷积,得到资产池损失分布,对任意阈值y,该方法同时适用于估计违约概率P(L>y)及期望值E[L∧y],数值实验表明该方法对小概率事件的估计效率有很大提升。

    Abstract:

    The multifactor version of Copula models is useful in fitting the complex correlation structure among the base portfolio of CDOs. However, plain Monte Carlo simulation is quite incapable of accurately measuring rare but significant loss events. We provide a fast numerical inversion of conditional Laplace transform in multifactor models.The method is capable of estimating loss probability P(L>y) and expected loss E[L∧y].Numerical examples illustrate the efficiency of the method, especially when handling rare events.

    参考文献
    [1]Marcin Wojtowicz.CDOs and the financial crisis: credit ratings and fair spread[J].Journal of Banking and Finance,2014,39:1-13.
    [2]Coval Joshua,Jakub Jurek,Erik Stafford.The economics of structured finance[J].Journal of Economic Perspectives,2009,23(1):3-25.
    [3]Lijuan Cao,Jingqing Zhang,Kian Guan LIM et al.An empirical study of pricing and hedging collateralized debt obligation(CDO)[J] .Advances in Econometrics,2007,22:15-54.
    [4]Ingo Fender,Nikola Tarashev,Haibin Zhu.Credit fundermentals,ratings and value-at-risk:CDOs versus corporate exposures[J].BIS Quarterly Review,2008,3:87-101.
    [5]Heitfield,Erik.Parameter Uncertainty and the Credit Risk of Collateralized Debt bligations.Federal Reserve Board[R].Working Paper,2008.
    [6]Tarashev,Nikola and Haibin Zhu. Modelling and Calibration Errors in Measures of Portfolio Credit Risk[R].Bank of International Settlements Working Paper,2007.
    [7]John M.Griffin , Dragon Yongjun Tang. Did Credit Rating Agencies Make Unbiased Assumptions on CDOs[J]. American Economic Association,2011,101(3):125-130.
    [8]Jhon Hull,Mirela Preduscu,Alan White.Bond Prices,Default Probabilities and Risk Premiums[J].Journal of Credit Risk,2005,1(2):53-60.
    [9]Li,David. On default correlation.a copula function approach[J].Journal of Fixed Income,2000.9(4):43-54.
    [10]Ingo Fender.,John Kiff.CDO Rating Methodology:Some Thoughts on Model Risk and Its Implication[R].BIS Working Papers,2004.
    [11]L.Anderson,S.Basu,and J.Sidenius, All your hedges in one basket,Risk, 2003,67-72.
    [12]J Gregory , JP Laurent, I will survive,Risk, 2003,16(6):103-107.
    [13]J Gregory , JP Laurent, Basket Default Swaps, CDOs,and factor copulas,J.Risk, 2005,103-122.
    [14]J.Abate and W.Whitt,Numerical inversion of Laplace Transforms of probability distribution,ORSA J.Comput, 1995,36-43
    [15]Paul Glassman and Sira Suchintabandid,Quadratic Transformation for CDO Pricing in Multifactor Models,Siam Journal on Financial Mathematics,2012,S3(1):137-162
    [16]Paul Glassman and Jingyi Li, Importance Sampling for Portforlio Credit Risk,Institute for Operations Research and the Management Sciences,2015,51(11):1643-1656
    [17]O. A. Vasicek, Loan Portfolio Value[J]. Risk, 2002,12:160-162.
    [18]Mashal R,NALD IM, ZEEV IA. On the Dependence of Equity and Asset Returns[J].Risk,2003,16(10):83-87.
    [19]J. Hull and White A.Valuation of a CDO and an nth to Default CDS without Monte Carlo Simulation[J].Journal of Derivatives,2004,12(2):8-23.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马卫锋,张峻嘉,孙丽华.多因子模型下担保债务凭证拉普拉斯定价方法[J].同济大学学报(自然科学版),2018,46(02):260~263

复制
分享
文章指标
  • 点击次数:1570
  • 下载次数: 1000
  • HTML阅读次数: 714
  • 引用次数: 0
历史
  • 收稿日期:2017-05-12
  • 最后修改日期:2017-12-17
  • 录用日期:2017-10-12
  • 在线发布日期: 2018-03-20
文章二维码