基于自然驾驶数据的高速公路出口换道决策模型
CSTR:
作者:
作者单位:

同济大学 交通运输工程学院,上海 201804,同济大学 交通运输工程学院,上海 201804,同济大学 交通运输工程学院,上海 201804,同济大学 交通运输工程学院,上海 201804,同济大学 交通运输工程学院,上海 201804

中图分类号:

U491.255

基金项目:

国家自然科学基金(71671126)


Modeling LaneChanging Behavior in Freeway OffRamp Areas Using Naturalistic Driving Data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究高速公路出口换道行为特性,分析驾驶员换道决策机理,依托上海自然驾驶实验所采集的驾驶行为样本和车辆运行参数,采用Google Earth标定行驶路径及高速公路出口范围以筛选出口样本,并根据车道偏移参数和方向盘转角识别换道行为;以单向4车道高速公路为例,综合考虑行驶路径信息和交通流环境,基于随机效用理论,采用Binary Logit(BL)模型拟合构建换道决策模型,得到车道效用函数;基于效用函数作出高速公路出口范围内在自由流、稳定流和拥挤流水平下的分车道效用分布图,并进行同质性和异质性分析.结果表明,换道决策模型准确率达到86.21%,各变量影响均可得到合理解释;根据效用分析,出匝车辆的换道行为是出匝意愿与通行环境改善需求两方面平衡的结果,兼有强制性换道与自由性换道的行为特性,且随着交通流状态由自由流过渡到拥挤流,后者影响逐渐增强,表现为上游向左换道行为趋于活跃、下游向右换道位置接近出口.

    Abstract:

    The main focus of this paper is to study lanechanging decisionmaking characteristics in freeway offramp areas and analyze the mechanism of lanechanging decisionmaking. Using driving behavior samples and vehicle operating data collected from Shanghai Naturalistic Driving Study, the departure samples are selected according to the driving path and specific range of exit with Google Earth. Then lanechanging behaviors can be identified by lane offset position and steering wheel angle. Furthermore, illustrated by the example of the 8lane freeway (four in each direction), this paper comprehensively considers driving route information and traffic flow environment as factors. On this basis, relying on the random utility theory, the binary logic (BL) model is adopted for fitting lanechanging decisionmaking model so that the lane utility function is obtained. After graphing utility of different lanes in offramp areas respectively in free flow, steady flow and congested flow, the homogeneity and heterogeneity analysis are conducted. The result indicates that the accuracy of the model comes to 86.21% and the influence of each factor can be reasonably explained. Besides, according to utility analysis, the lanechanging behavior of leaving vehicles is a consequence of the balance between leaving willingness and requirement for improving driving environment. In other words, it combines the characteristics of mandatory and discretionary incentives. Moreover, in the process of traffic transforming from free flow to heavy flow, the influence of the latter increases: the position at which drivers start to perform right lanechanging gradually approaches the diverging area and left lanechanging behavior is more active in upstream section.

    参考文献
    [1]Barria J A, Thajchayapong S. Detection and classification of traffic anomalies using microscopic traffic variables[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 695-704.
    [2]卢川,王朝阳,项乔君等. 高速公路出口匝道交通安全评价方法研究[J]. 现代交通技术, 2011, 8(6): 60-63.LU Chuan, WANG Chaoyang, XIANG Qiaojun, et al. Research on Safety Evaluation Method for Expressway Off-ramp[J]. Modern Transportation Technology, 2011, 8(6): 60-63.
    [3]Sun D J, Elefteriadou L. Lane-changing Behavior on Urban Streets: A Focus Group-based Study[J]. Applied Ergonomics, 2011, 42(5): 682-691.
    [4]武超群. 基于驾驶员眼动的车道变换特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.WU Chaoqun. Study on Characteristics of Lane Change Based on Eye Movements Analysis[D]. Harbin: Harbin Institute of Technology, 2008.
    [5]Sun D J, Elefteriadou L. Lane-Changing Behavior on Urban Streets: An “in-vehicle” Field Experiment-based Study[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(7), 525–542.
    [6]黄秋菊. 车道变换行为特性及其对交通安全影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.HUANG Qiuju. Study on Lane Change Behavior Character and Its Influence to Traffic Safety[D]. Harbin: Harbin Institute of Technology, 2007.
    [7]徐智慧,程国柱,裴玉龙. 车道变换行为对道路通行能力影响的研究[J]. 中国科技论文在线, 2010, 5(10): 749-753.XU Huizhi, CHENG Guozhu, PEI Yulong. Study on Effect of Lane-changing Behavioral Characteristic to Capacity[J]. Sciencepaper Online, 2010, 5(10): 749-753.
    [8]漆巍巍,裴玉龙. 城市道路拥堵状态下驾驶人换道特性研究[J]. 城市交通, 2014, 12(4): 72-76.QI Weiwei, PEI Yulong. Characteristics of Drivers’ Lane Change under Traffic Congestion on Urban Roadways[J]. Urban Transport of China, 2014, 12(4): 72-76.
    [9]Toledo T, Choudhury C F, Ben-Akiva M E. Lane-Changing Model with Explicit Target Lane Choice[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1934(1): 157-165.
    [10]Zheng Z D. Recent Developments and Research Needs in Modeling Lane Changing[J]. Transportation Research Part B, 2014, 60: 16-32.
    [11]Gipps P G. A Model for the Structure of Lane-changing Decisions[J]. Transportation Research Part B, 1986, 20(5): 403–414.
    [12]Yang Q I, Koutsopoulos H N. A Microscopic Traffic Simulator for Evaluation of Dynamic Traffic Management Systems[J]. Transportation Research Part C, 1996, 4(3): 113–129.
    [13]Hidas P. Modelling Vehicle Interactions in Microscopic Simulation of Merging and Weaving[J]. Transportation Research Part C, 2005, 13(1): 37–62.
    [14]Ahmed K I, Ben-Akiva M E., Koutsopoulos H N, et al. Models of Freeway Lane Changing and Gap Acceptance Behavior[C]. Proceedings of the 13th International Symposium on the Theory of Traffic Flow and Transportation, Lyon: Transport Research Laboratory, 1996: 501–515.
    [15]Toledo T. Integrated Driving Behavior Modeling[D]. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Doctor of Philosophy, 2007.
    [16]王艳娜,周子力,王新伟. 基于元胞自动机的模糊控制换道模型[J]. 计算机应用, 2007, 27(5):1197-1200.WANG Yanna, ZHOU Zili, WANG Xinwei. Lane-Changing Model with Fuzzy Control Based on Cellular Automata[J]. Computer Applications, 2007, 27(5):1197-1200.
    [17]Worrall R D, Bullen A G, Gur Y. An Elementary Stochastic Model of Lane-changing on a Multilane Highway[J]. Highway Research Record, 1970, 308: 1-12.
    [18]Hamdar S H. Modeling Driver Behavior as a Stochastic Hazard-based Risk-Taking Process[D]. Northwestern University, 2009.
    [19]Wei C. Developing freeway lane-changing support systems using artificial neural networks[J]. Journal of Advanced Transportation, 2010, 35(1): 47-65.
    [20]Balal E, Cheu R L and Sarkodie-Gyan T. A Binary Decision Model for Discretionary Lane Changing Move Based on Fuzzy Inference System[J]. Transportation Research Part C: Emerging Technologies, 2016, 67: 47-61.
    [21]Moridpour S. Analysing the Performance of a Fuzzy Lane Changing Model Using Data Mining[J]. Data Mining in Dynamic Social Networks and Fuzzy Systems, 2013, 289-315.
    [22]Zhao D, Peng H, Nobukawa K, et al. Analysis of mandatory and discretionary lane change behaviors for heavy trucks[C]. Proceedings of the 12th International Symposium on Advanced Vehicle Control, Tokyo, Japan, 2014.
    [23]Dingus T A, Klauer S G, Neale V L, et al. The 100-Car Naturalistic Driving Study: Phase II – Results of the 100-Car Field Experiment[R]. Tech. Rep. DOT HS-810 593, US: U.S. Department of Transportation, National Highway Traffic Safety Administration, 2006.
    [24]Uchida N, Kawakoshi M, Tagawa T, et al. An Investigation of Factors Contributing to Major Crash Types in Japan Based on Naturalistic Driving Data[J]. IATSS Research, 2010, 34(1): 22-30.
    [25]Fitch G M, Hanowski R J. Using naturalistic driving research to design, test and evaluate driver assistance systems[J]. Handbook of Intelligent Vehicles. London: Springer, 2012: 559-580.
    [26]Lee S E, Olsen E C B, and Wierwille W W. A Comprehensive Examination of Naturalistic Lane-Changes[R]. Tech. Rep. DOT HS-809 702, US: U.S. Department of Transportation, National Highway Traffic Safety Administration, 2004.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张兰芳,陈程,张佳妍,方守恩,郭静秋.基于自然驾驶数据的高速公路出口换道决策模型[J].同济大学学报(自然科学版),2018,46(03):0318~0325

复制
分享
文章指标
  • 点击次数:2734
  • 下载次数: 1450
  • HTML阅读次数: 809
  • 引用次数: 0
历史
  • 收稿日期:2017-07-11
  • 最后修改日期:2017-09-22
  • 录用日期:2017-11-15
  • 在线发布日期: 2018-03-27
文章二维码