列车轮轨黏着力在线估测计算方法
CSTR:
作者:
作者单位:

同济大学,同济大学,上海松下微波炉有限公司

中图分类号:

U270.35

基金项目:

国家自然科学基金(U1534205);“十二五”国家科技支撑计划(2015BAG12B01)


Online Estimation Algorithm of Adhesive Force for Train Wheeltrack
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对列车的制动防滑控制,提出黏着力的在线估测计算方法.因为黏着力不易测量,如何实时监测黏着力大小以便充分利用轮轨黏着是防滑控制的关键.建立了轮对动力学模型,并采用卡尔曼滤波器、扩张状态观测器等,以轴速和车轮等效夹紧力作为可输入量,设计了5种黏着力在线估测计算方法.采用Simulink软件平台,设置了信号噪声污染和传输延迟,并仿真了黏着力不变和黏着力变化两种工况,结果显示5种算法都能对黏着力进行估测,但综合黏着力估测的响应时间和最大误差两个指标来看,非线性扩张状态观测算法对黏着力的估测效果是最好的.最后,采用实测数据,进一步验证了算法对黏着力估测的准确性.

    Abstract:

    Novel online estimation algorithms of train adhesive force were proposed for antiskid control. Since it is difficult to measure the adhesive force, it is of significance to make full use of adhesive force in antiskid control. In this paper, a wheel set dynamic model is established first. Then, using the Calman filter, extended state observer and so on, five online estimation algorithms for train adhesive force were designed, where the axle speed and the equivalent clamping force were the input. Furthermore, with the simulink software platform, signal noise contamination and transmission delay were set, and two conditions of constant adhesive force and variable adhesive force were simulated. Simulation results reveal that the five algorithms could be used to estimate the adhesive force, but when the response time and the maximum error of adhesive force estimation are taken into account, the nonlinear expansion state observation algorithm is the best algorithm for adhesive force estimation. Finally, the accuracy of the estimation algorithm is further validated by using measured data.

    参考文献
    [1] Hertz, H. über die Berührung fester elastischer Kǒrper (On the contact of elastic solid), J. Reine und angewandte Mathematik, 92, 1882: 156-171.
    [2] Kalker J. J. Three-dimensional Elastic Bodies in rolling contact. The Netherlands, Dordrecht, Kluwer Academic Publishers, 1990.
    [3] Shen Z. Y, Hedrick J. K. and Elkins J. A, A comparison of alternative creep-force models for rail vehicles dynamic analysis, Proc. 8th IAVSD Symp, Cambridge, MA, 1984: 591-605.
    [4] 金学松. 轮轨蠕滑理论及其试验研究[M].成都:西南交通大学出版社,2006.JIN Xuesong. Lun gui ru hua li lun ji yi shi yan yan jiu (in Chinese)[M]. Chengdu: Southwest Jiao Tong University press, 2006.
    [5] 顾博川. 基于奇异值分解强跟踪滤波的机车黏着系数估计[J].铁道机车车辆, 2011,31(4):26-29.GU Bochuan. Locomotive adhesion coefficient estimation based on SVD strong track filter [J]. Railway Locomotive Car, 2011,31(4):26-29.
    [6] 李宁洲,冯晓云. 基于自适应子群协作QPSO算法的机车黏着智能模糊优化控制[J].中国铁道科学, 2014,35(4): 100-106.LI Ningzhou, FENG Xiaoyun. Intelligent fuzzy optimal control of locomotive adhesion based on adaptive multiple subgroup collaboration QPSO algorithm, 2014,35(4): 100-106.
    [7] Polach O. Influence of locomotive traction effort on the forces between wheel and rail [J] .Vehicle system dynamics supplement, 2001, (35): 7-22.
    [8] 韩京清. 自抗扰控制技术[J].前沿科学, 2003, 25(2): 98-102.HAN Jingqing. Auto disturbances rejection control technique[J], Frontier Science, Beijing, 2003, 25(2): 98-102.
    [9] 段玉波. 最优滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社.1994,10: 58-68.DUAN Yubo. Zui you lv bo li lun ji yi ying yon(in Chinese) [M]. Harbin: Harbin Institute of Technology Press, 1994,10: 58-68.
    [10] 吴萌岭,罗卓军. 基于自适应参数估计的列车制动减速度控制[J].铁道学报,2015, 37(8): 8.WU Mengling, LUO Zhuojun. Study on train braking deceleration feedback control based on adaptive parameter estimation[J]. Journal of the China Railway Society, 2015, 37(8): 8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴萌岭,彭顺,李小平.列车轮轨黏着力在线估测计算方法[J].同济大学学报(自然科学版),2018,46(03):0354~0358

复制
分享
文章指标
  • 点击次数:1724
  • 下载次数: 1122
  • HTML阅读次数: 585
  • 引用次数: 0
历史
  • 收稿日期:2017-07-14
  • 最后修改日期:2018-01-04
  • 录用日期:2017-12-01
  • 在线发布日期: 2018-03-27
文章二维码