脉动风速随机傅里叶谱模型的参数聚类分析
CSTR:
作者:
作者单位:

同济大学土木工程学院建筑工程系,同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室

中图分类号:

TU973.213

基金项目:

国家自然科学基金项目(51538010)


Cluster Analysis of Parameter of Stochastic Fourier Spectrum for Fluctuating Wind Speeds
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脉动风速随机Fourier谱模型为脉动风速模拟提供了一条基于物理的建模途径.为了实现对这一模型基本参数概率分布的合理建模,阐述了模型基本参数的物理含义,利用实测风速记录识别了基本参数的概率分布.分析发现,分界波数的统计分布出现典型的双峰形态;由原始识别结果的统计分布导出的功率谱与Kaimal谱在中、低频段有较大差别.深入研究表明,分界波数有显著的聚类特征.基于此,采用kmeans函数聚类方法分析了分界波数的数据结构,指出上述异常现象与参数的聚类结果密切相关.根据聚类结果,合理地筛选实测风速记录,进行了分界波数的建模.

    Abstract:

    The stochastic Fourier spectrum provides a physical based perspective for fluctuating wind simulation. To properly model the probability density function of the elemental variables, the basic physical meaning of the elemental variables is elaborated and the statistical distributions of them are identified from the measurements. It is revealed that the statistical distribution of the cutoff wave number displays an obvious bimodal pattern; the power spectrum density derived from the fitted distribution of the original identifications deviates from the Kaimal spectrum evidently in the low and middle frequency band. Besides, the identifications of the cutoff wave number are eminently characterized by a clustering phenomenon, based on which the kmeans cluster analysis is utilized to reveal the underlying structure of the data set. It is pointed that the cluster characteristic of the fluctuating wind speed sample is closely related to the above abnormal phenomenon. Finally, the distribution modeling for the cutoff wave number is conducted for the reasonably selected measurements based on the cluster results.

    参考文献
    [1] Jain A K. Data clustering: 50 years beyond K-means[J]. Pattern recognition letters, 2010, 31(8): 651-666.
    [2] 方开泰, 潘恩沛. 聚类分析[M]. 地质出版社, 1982.FANG Kai-tai, PAN En-pei. Cluster Analysis[M]. Geological Publishing House, 1982
    [3] 苍宏宇, 谭宗颖. 聚类搜索引擎发展现状研究[J]. 图书情报工作, 2009, 53(2):125-128.CANG Hong-yu, TAN Zong-yin. Research on the Development Situation of Clustering Search Engine[J]. Library & Information Service, 2009.
    [4] Tan P N, Steinbach M, Kumar V. Introduction to Data Mining, (First Edition)[M]. Addison-Wesley Longman Publishing Co. Inc. 2005.
    [5] Baldi P, Brunak S. Bioinformatics: the machine learning approach[M]. DBLP, 2001.
    [6] Simiu E, Scanlan R H. Wind Effects on Structures[M]. Wiley, 1996.
    [7] Counihan J. Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972[J]. Atmospheric Environment (1967), 1975, 9(10): 871-905.
    [8] 阎启, 谢强, 李杰. 风场长期观测与数据分析[J]. 建筑科学与工程学报, 2009, 26(1): 37-42.YAN qi, XIE Qiang, LI Jie. Long-term Observation and Data Analysis of Wind Field[J]. Journal of Architecture & Civil Engineering, 2009.
    [9] 李杰. 随机动力系统的物理逼近[J]. 中国科技论文在线, 2006, 1(2): 95-104.LI Jie. A physical approach to stochastic dynamical systems[J]. Sciencepaper Online, 2006.
    [10] 李杰. 物理随机系统研究的若干基本观点 [R]. 上海: 同济大学, 2006.LI Jie. Basic views of the stochastic physical system research[R]. Shanghai: Tongji University, 2006.
    [11] Li J, Chen J. Stochastic dynamics of structures[M]. John Wiley & Sons, 2009.
    [12] 李杰, 阎启. 脉动风速随机 Fourier 波数谱研究[J]. 同济大学学报: 自然科学版, 2011, 39(12): 1725-1731.LI Jie, YAN Qi. Research on stochastic Fourier wave-number spectrum of fluctuating wind speed[J]. Journal of Tongji University, 2011, 39(12):1725-1731.
    [13] Katul G, Chu C R. A theoretical and experimental investigation of energy-containing scales in the dynamic sublayer of boundary-layer flows[J]. Boundary-Layer Meteorology, 1998, 86(2): 279-312.
    [14] 李杰, 阎启. 结构随机动力激励的物理模型: 以脉动风速为例[J]. 工程力学, 2009 (A02): 175-183.LI Jie, YAN Qi. Physical Models for the Stochastic Dynamic Excitations of Structures: In the Case of Fluctuating Wind Speed[J]. Engineering Mechanics, 2009.
    [15] Li J, Peng Y, Yan Q. Modeling and simulation of fluctuating wind speeds using evolutionary phasespectrum[J]. Probabilistic Engineering Mechanics, 2013, 32: 48-55.
    [16] Blackadar A K, Tennekes H. Asymptotic similarity in neutral barotropic planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1968, 25(6): 1015-1020.
    [17] Dyrbye C, Hansen S O. Wind loads on structures[J]. 1996.
    [18] GB50009-2012建筑结构荷载规范[S]. 北京:中国建筑工业出版社,2012.GB50009-2012 Load code for the design of building structures [S]. Beijing: China Building Industry Press,2012.
    [19] Li Q S, Zhi L, Hu F. Boundary layer wind structure from observations on a 325m tower[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(12): 818-832.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪旭,彭勇波,李杰.脉动风速随机傅里叶谱模型的参数聚类分析[J].同济大学学报(自然科学版),2018,46(06):0715~0721

复制
分享
文章指标
  • 点击次数:1554
  • 下载次数: 1099
  • HTML阅读次数: 722
  • 引用次数: 0
历史
  • 收稿日期:2017-08-01
  • 最后修改日期:2018-03-24
  • 录用日期:2018-03-04
  • 在线发布日期: 2018-07-05
文章二维码