可液化河谷场地不同形式梁式桥的地震反应
CSTR:
作者:
作者单位:

同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室,浙江省交通规划设计研究院

中图分类号:

TU473.1

基金项目:

国家自然科学基金(51278375);土木工程防灾国家重点实验室(SLDRCE 15-B-05)


Seismic Response of Girder Bridges in Liquefiable River Valleys with Different Structural Configurations
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    场地液化对河谷场地中不同结构体系、不同基础形式的梁式桥的地震反应可能具有不同程度的影响.针对该问题,以典型可液化河谷场地三跨梁式桥为背景,建立了二维场地桥梁结构一体化有限元模型,包括群桩基础简支梁桥、群桩基础连续梁桥和桩柱式基础简支梁桥3种桥型,并进行非线性地震反应分析.从场地和桥梁震后变形、桩基础变形分布、桥墩漂移率、滑动支座位移和桥台伸缩缝位移等方面,探究不同形式梁桥的地震反应规律,重点揭示场地液化对不同形式梁式桥地震反应的影响规律.结果表明:场地液化会显著增大群桩基础简支梁桥的落梁风险,群桩基础连续梁桥受场地液化的影响次之,桥台处的落梁、台梁碰撞风险也较大,而桩柱式基础简支梁桥受场地液化的影响较小.

    Abstract:

    Seismic responses of girder bridges may vary due to different structural systems and foundation types. In this regard, based on typical threespan girder bridges in liquefiable river valleys, three 2dimensional finite element models considering soilstructure interaction were built, including simply supported girder bridge with pile group foundations, continuous girder bridge with pile group foundations, and simply supported girder bridge with pileshaft foundations. Nonlinear time history analyses were performed to investigate the seismic response properties of these bridges. Postearthquake deformations of the soil and bridge, pile deformations, column drift ratios, bearing displacements, and expansion joint deformations were investigated to reveal the impact of soil liquefaction on seismic responses of these three types of bridges. The numerical results show that soil liquefaction significantly increases the unseating potential of the simply supported girder bridge with pile group foundations. For abutments of continuous girder bridge, unseating or abutmentdeck collision potentials are generally increased. In contrast, seismic responses of the simply supported girder bridge with pileshaft foundations are rarely influenced by soil liquefaction.

    参考文献
    [1] 徐鹏举. 可液化场地桥梁桩基础地震反应分析与简化分析方法研究[D]. 哈尔滨工业大学, 2011.XU Pengju. Seismic Response analysis and simplified method of bridge pile foundation in liquefiable ground[D]. Harbin Institute of Technology, 2011.
    [2] BHATTACHARYA S, TOKIMATSU K, GODA K, et al. Collapse of Showa Bridge during 1964 Niigata Earthquake: A quantitative reappraisal on the failure mechanisms[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 55-71.
    [3] LIN S, TSENG Y, CHIANG C, et al. Damage of piles caused by lateral spreading — back study of three cases[C]//Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. USA, 2006: 121-133.
    [4] HAMANDA M, O'ROURKE T. Case studies of liquefaction and lifeline performance during past earthquakes, Volume 1, Japanese Case Studies [R]. Technical Report NCEER-92-0001, Buffalo, New York, NCEER 1992.
    [5] ISHIHARA K., ACACIO A. and TOWHATA I. Liquefaction induced ground damage in Dagupan in the July 16, 1990 LUZON Earthquake[J] Soils and Foundations, 1993, 33(1): 133-154.
    [6] 汪明武, TOBITA T, IAI S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩土力学与工程学报, 2009, 28(10): 2012-2017.WANG Mingwu, TOBITA T, IAI S. Dynamic centrifuge tests of seismic responses of pile foundations in inclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2012-2017.
    [7] CHANG D, BOULANGER R, BRANDENBERG S, et al. Dynamic analyses of soil-pile-structure interaction in laterally spreading ground during earthquake shaking [C]// BOULANGER R, TOKIMATSU K. Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. Davis, California, ASCE, 2006: 218-229.
    [8] ARMSTRONG R J, BOULANGER R W, BEATY, M, et al. Liquefaction effects on piled bridge abutments: centrifuge tests and numerical analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 1(3): 433-443.
    [9] 唐亮,凌贤长,徐鹏举等. 液化场地桩-土地震相互作用振动台试验数值模拟[J]. 土木工程学报,2012,45(增刊1): 302-306.TANG Liang, LING Xianzhang, XU Pengju et al. Numerical simulation of shaking table test for seismic soil-pile interaction in liquefying ground[J]. China Civil Engineering Journal, 2012, 45(Supplement 1): 302-306.
    [10] SU L, TANG L, LING X, et al. Pile Response to liquefaction-induced lateral spreading: A shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 196-204.
    [11] TANG L, MAULA B, LING X, et al. Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1): 171-180.
    [12] VALSAMIS A, BOUCKOVALAS G, CHALOULOS Y. Parametric analysis of single pile response in laterally spreading ground[J]. Soil Dynamics and Earthquake Engineering, 2012, 34: 99-110.
    [13] UZUOKA R, SENTO N, KAZAMA M, et al. Three-dimensional numerical simulation of earthquake damage to group-piles in a liquefied ground[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(5): 395-413.
    [14] SHIN H, ARDUINO P, KRAMER S, et al. Seismic response of a typical highway bridge in liquefiable soil[C]//ZENG D, MANZARI M T, HILTUNEN D R. Geotechnical Earthquake Engineering and Soil Dynamics IV. Reston: ASCE, 2008: 1-11.
    [15] ZHANG Y, CONTE J P, YANG Z, et al. Two-dimensional nonlinear earthquake response analysis of a bridge-foundation-ground system[J]. Earthquake Spectra, 2008, 24(2): 343–386.
    [16] ELGAMAL A, YAN L, YANG Z, et al. Three-dimensional seismic response of humboldt bay bridge-foundation-ground system[J]. Journal of Structural Engineering, 2008, 134(7): 1165-1176.
    [17] 王晓伟,李闯,叶爱君等. 可液化河谷场地简支梁桥的地震反应分析[J]. 中国公路学报,2016, 29(4): 85-95.WANG Xiaowei, LI Chuang, YE Aijun, et al. Seismic demand analysis of a simply supported girder bridge in liquefied or nonliquefied ground[J]. China Journal of Highway and Transport, 2016, 29(4): 85-95.
    [18] MCKENNA F. OpenSees: A framework for earthquake engineering simulation[J]. Computing in Science and Engineering, 2011, 13(4): 58-66.
    [19] BIOT M, Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2):182-185.
    [20] YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
    [21] ELGAMAL A, YANG Z, PARRA E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(4): 259-271.
    [22] BOULANGER R, CURRAS C, KUTTER B, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
    [23] BRANDENBERG S, ZHAO M, BOULANGER R, et al. P - y plasticity model for nonlinear dynamic analysis of piles in liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1262-1274.
    [24] WILSON D, BOULANGER R, KUTTER B. Soil-pile-superstructure interaction at soft or liquefiable soils sites – centrifuge data report for CSP3[R]. UCD/ CGMDR-97/04, University of California at Davis, 1997.
    [25] 王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132-140.WANG Xiaowei, YE Aijun, LUO Fuyuan. Seismic response sensitivity analysis of pile supported bridge structures in liquefiable ground[J]. Engineering Mechanics, 2016, 33(8):132-140.
    [26] WANG X, LUO F, SU Z, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 17(6): 6016039.
    [27] SU L, LU J, ELGAMAL A, et al. Seismic performance of a pile-supported wharf: three-dimensional finite element simulation[J]. Soil Dynamics and Earthquake Engineering, 2017, 95: 167-179.
    [28] SCOTT M H, FENVES G L. Krylov Subspace accelerated newton algorithm: Application to dynamic progressive collapse simulation of frames[J]. Journal of Structural Engineering, 2010, 136(5): 473–480.
    [29] GiD 12.0.1. The personal pre and postprocessor[CP]. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.
    [30] LI J., SPENCER B F, ELNASHAI A S. Bayesian updating of fragility functions using hybrid simulation[J]. Journal of Structural Engineering, 2012, 139(7): 1160–1171.
    [31] TAVARES D H, PADGETT J E, PAULTRE P. Fragility curves of typical as-built highway bridges in eastern canada[J]. Engineering Structures, 2012, 40(7):107-118.
    [32] KIM S H, SHINOZUKA M. Development of fragility curves of bridges retrofitted by column jacketing[J]. Probabilistic Engineering Mechanics, 2004, 19(1–2): 105-112.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晓伟,叶爱君,李闯.可液化河谷场地不同形式梁式桥的地震反应[J].同济大学学报(自然科学版),2018,46(06):0759~0766

复制
分享
文章指标
  • 点击次数:1652
  • 下载次数: 876
  • HTML阅读次数: 575
  • 引用次数: 0
历史
  • 收稿日期:2017-08-18
  • 最后修改日期:2018-03-19
  • 录用日期:2018-03-05
  • 在线发布日期: 2018-07-05
文章二维码