自调频调谐质量阻尼器及其减振性能试验
CSTR:
作者:
作者单位:

同济大学结构工程与防灾研究所,同济大学结构工程与防灾研究所,上海市房地产科学研究院,同济大学结构工程与防灾研究所

中图分类号:

TU352.1;TU317

基金项目:

国家自然科学基金资助项目(51408435)


Experimental Study of Effect of Controlling Vibration of Self-Adjustable Tuned Mass Damper
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了改善调谐质量阻尼器(TMD)对频率调谐敏感和使用过程中TMD的频率难以调节的缺陷,利用可调节质量的箱体代替TMD的质量块,并附加上伺服控制系统和驱动装置,即为自调频TMD.在特定的外界激励作用下,伺服控制系统能够自发地启动驱动装置改变TMD的质量,调节TMD频率至控制结构频率附近.通过对比自振频率偏离TMD频率的单自由度简支桥梁模型,在TMD启动变频率调节前、后两种情况下的自由振动和受迫振动,以等效阻尼比、加速度峰值和均方根值等作为评价指标,测试了该自调频TMD对原TMD的改良效果.结果表明:变频率调节有较好的收敛性,且相比启动变频率调节前,启动后能提高模型结构的等效阻尼比;多种人行荷载工况下,相比启动变频率调节前,启动后均能提高减振率.

    Abstract:

    In order to solve the problem of mistuing of tuned mass damper (TMD) and overcome the difficulty to adjust the frequency of TMD during normal using, a selfadjusting TMD was proposed. The selfadjustable TMD was generated by a tank instead of solid mass, using a servo control system to start the drive to change the mass of (TMD) and spontaneously adjust the frequency of TMD to main structure near the natural frequency of vibration, under the special harmonic excitation. The vibration reduction effects with or without this selfadjustable device under freedom vibration and forced vibration were set to investigate the effect on improving the previous TMD based on the equivalent damping ratio, the peak value of acceleration, and rootmeansquare. The results indicate that the selfadjustable TMD has a good convergence and could increase the equivalent damping ratio of the structure. The selfadjustable TMD has good vibration tuned effects for the various excitation conditions.

    参考文献
    [1] 徐怀兵, 欧进萍. 设置混合调谐质量阻尼器的高层建筑风振控制实用设计方法[J]. 建筑结构学报, 2017, 38(6): 144-154.XU Huaibing, OU Jinping. Design method for wind-induced vibration control of high-rise buildings with hybrid tuned mass dampers [J]. Journal of Building Structures, 2017, 38(6): 144-154.
    [2] 陈俊岭, 李哲旭, 黄冬平. 盆式调谐/颗粒阻尼器在风力发电塔振动控制中的实测研究[J]. 东南大学学报(自然科学版), 2017, 47(3): 571-575.CHEN Junling, LI Zhexu, HUANG Dongping. Site measurement of basin tuned and particle damper for vibration control in wind turbine tower [J]. Journal of Southeast University (Natural Science Editions), 2017, 47(3): 571-575.
    [3] 盛涛, 金红亮, 李京, 等. 液体质量双调谐阻尼器(TLMD)的设计方法研究[J]. 振动与冲击, 2017, 36(8): 197-202.SHENG Tao, JIN Hongliang, LI Jing, et al. A study on the design method of tuned liquid and mass damper (TLMD) [J]. Journal of Vibration and Shock, 2017, 36(8): 197-202.
    [4] 杨永春, 赵金赛. TMD自适应变频方法研究[J]. 振动与冲击, 2009, 28(12): 71-75.YANG Yongchun, ZHAO Jinsai. Discussion on auto frequency-changeable TMD [J]. Journal of Vibration and Shock, 2009, 28(12): 71-75.
    [5] Nagarajaiah S. Adaptive passive, semi-active, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform [J]. Structural Control and Health Monitoring, 2009; 16(7–8): 800–41.
    [6] Berardengo M, Cigada A, Guanziroli F, Manzoni S. Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents [J]. Journal of Sound and Vibration. 2015, 349:18-38.
    [7] Feudo S. Lo, Allani A, Cumunel G, Argoul P, Bruno D. Experimental tuned mass damper based on eddy currents damping effect and adjustable stiffness [C]. CSMA 2015, 12 Colloque National en Calcul des Structures, 18-22 May 2015, Giens, France.
    [8] Iván M. Díaz, Paul Reynolds. Acceleration feedback control of human-induced floor vibrations [J]. Engineering Structures, 32(2010): 163–173.
    [9] R.Rana,T.T.Soong. 调谐质量阻尼器的参数研究与简化设计[J]. 世界地震工程, 1998, 14(4): 91-107.R.Rana, T.T.Soong. The parameters of the tuned mass damper research and simplify the design [J]. World Earthquake Engineering | World Earthq Eng, 1998, 14(4): 91-107.
    [10] Magalhaes F, Cunha A, Caetano E, et al. Damping estimation using free decays and ambient vibration tests [J]. Mechanical Systems and Signal Processing, 2010, 24(5):1274-1290.
    [11] International Organization for Standardization. ISO 2631-2-2003 Mechanical vibration and shock-evaluation of human exposure to whole body vibration-part 2: continuous and shock-induced vibration in buildings (1 to 80 Hz) [S]. ISO 2631-2:2003.
    [12] Setra F. Assessment of vibration behaviour of foot-bridges under pedestrian loading [M]. France: Technical Guide Setra, 2006: 19-24.
    [13] Zivanovic S, Pavic A. Probabilistic modeling of walking excitation for building floors [J]. Journal of Performance of Constructed Facilities, 2009, 23(3) :132-143.
    [14] 王洪涛, 施卫星, 韩建平等. 钢连桥人致振动及TMD减振效应实测与分析[J]. 振动、测试与诊断, 2016, 36(3): 505-511.WANG Hongtao, SHI Weixing, HAN Jianping, et al. Analysis and In-situ Test of Human-Induced Vibration for the Steel Footbridge with and Without TMD Devices [J]. Journal of Vibration.Measurement and Diagnosis, 2016, 36(3): 505-511.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施卫星,王梁坤,王洪涛,单伽锃.自调频调谐质量阻尼器及其减振性能试验[J].同济大学学报(自然科学版),2018,46(06):0751~0758

复制
分享
文章指标
  • 点击次数:1205
  • 下载次数: 875
  • HTML阅读次数: 718
  • 引用次数: 0
历史
  • 收稿日期:2017-08-23
  • 最后修改日期:2018-03-08
  • 录用日期:2018-03-04
  • 在线发布日期: 2018-07-05
文章二维码