漂浮体系斜拉桥黏滞阻尼器参数的简化计算
CSTR:
作者:
作者单位:

同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室

中图分类号:

U422.5+5

基金项目:

国家自然科学基金项目(51478338)


Simplified Calculation of Viscous Damper Parameter for Floatingsystem Cablestayed Bridge XU Yan, TONG Chuan, LI Jianzhong
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    根据漂浮体系斜拉桥的动力响应特点以及近断层速度脉冲型地震动特性,基于结构动力学基本理论,提出了考虑附加黏滞阻尼器的漂浮体系斜拉桥三质点简化动力模型.利用等效阻尼比概念以及能量消耗等效原理,推导得到了速度脉冲型地震动作用下漂浮体系斜拉桥线性及非线性黏滞阻尼器阻尼系数的简化计算公式.最后,通过一座漂浮体系斜拉桥实例,验证了相关公式的正确性.

    Abstract:

    In the light of velocity pulse characteristics of nearfault ground motion and the dominated vibration mode to the dynamic response of floatingsystem cablestayed bridge, a threemass simplified dynamic model was derived and the differential dynamic equation was established. Based on the method of equivalent damping ratio and equivalent linearization of nonlinear viscous dampers, design formulas for determining the damping coefficient of nonlinear viscous dampers of the bridge subjected to nearfault ground motion were deduced. Finally, the accuracy of the proposed design formulas for nonlinear viscous dampers in predicting the damping ratio of the bridge was verified by a real cablestayed bridge.

    参考文献
    [1] 叶爱君, 胡世德, 范立础. 超大跨度斜拉桥的地震位移控制[J]. 土木工程学报, 2004, 37(12):38-43
    Ye Aijun. Seismic Displacement Control for Super-long-span Cable-stayed Bridges[J]. China Civil Engineering Journal, 2004, 37(12):38-43(in Chinese)
    [2] Chioccarelli E, Iervolino I. Near - source seismic hazard and design scenarios [J] Earthquake engineering & structural dynamics, 2013, 42 (4): 603-622.
    [3] Champion C, Liel A. The effect of near-fault directivity on building seismic collapse risk [J] Earthquake Engineering & Structural Dynamics, 2012, 41 (10):. 1391-1409.
    [4] 张凡、李帅、颜晓伟、王景全,近断层脉冲型地震动作用下大跨斜拉桥地震响应分析[J],振动与冲击, 2017, 36(21): 25-30.
    ZHANG Fan, LI Shuai, YAN Xiaowei, WANG Jingquan, Effects of near-fault pulse-type ground motions on long-span cable-stayed bridge. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(21): 25-30.
    [5] Council B S S. Prestandard and commentary for the seismic rehabilitation of buildings [J]. Report FEMA-356, Washington, DC, 2000.
    [6] Seleemah A A. Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers [J]. Technical Report ,MCEER, 1997.
    [7] Hwang J S, Chang K C, Tsai M H. Composite damping ratio of seismically isolated regular bridges[J]. Engineering Structures, 1997, 19(1):55–62.
    [8] Hwang J S, Tseng Y S. Design formulations for supplemental viscous dampers to highway bridges. Earthquake Engineering & Structural Dynamics, 2005, 34(13):1627-1642
    [9] 李国豪.桥梁结构稳定与振动[M].北京: 中国铁道出版社,1992:578-601
    Li Guohao. Stability and vibration of bridge structure [M]. Beijing: China Railway Publishing House, 1992:388-394 (in Chinese)
    [10] Chopra A K. Dynamics of structures: theory and applications to earthquake engineering [M]. 3th ed. America: Prentice-Hall,Inc,2007
    [11] 徐艳, 黄永福, 李建中. 脉冲型地震作用下斜拉桥纵向响应的简化计算[J]. 华南理工大学学报 (自然科学版), 2015(2):41-47
    Xu Yan, Huang Yongfu, Li Jianzhong. Simplified Calculation of Longitudinal Seismic Response of Cable-Stayed Bridge Subjected to Pulsed Ground Motions [J]. Journal of South China University of Technology(Natural Science Edition) , 2015(2):41-47(in Chinese)
    [12] Makris N, Chang S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures [J]. Earthquake engineering & structural dynamics, 2000, 29(1): 85-107.
    引证文献
引用本文

徐艳,童川,李建中.漂浮体系斜拉桥黏滞阻尼器参数的简化计算[J].同济大学学报(自然科学版),2018,46(05):0574~0579

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-04
  • 最后修改日期:2018-03-21
  • 录用日期:2018-03-05
  • 在线发布日期: 2018-06-05
文章二维码