Abstract:When implementing a highly nonlinear stressstrain model to solve boundaryvalued problems, one of the major challenges is how to reduce the accumulative error and to maintain the effectiveness of the numerical integration. In general, the conventional explicit algorithm tends to have a lower computational efficiency and a higher accumulative error. In order to deal with these challenges, this paper proposes an improvedexplicit algorithm combining with the cuttingplane method, in which the Dormand and Prince RungeKutta method is used instead of the forward Euler. Using the highly nonlinear SANICLAY model for structured clay as an example, the convergence, the computational efficiency, and the accuracy of three algorithms, namely the conventional explicit algorithm, the improvedexplicit algorithm, and the implicit algorithm, are compared via numerical simulations of single element tests. Finally, the improvedexplicit algorithm is applied to the multielement calculation of tunnel excavation. Compared with the implicit algorithm, the conventional explicit algorithm has a lower computational efficiency and a higher accumulative error. The improvedexplicit algorithm can greatly improve the computational efficiency and accuracy.