大角度透视变形集装箱图像箱号识别方法
CSTR:
作者:
作者单位:

同济大学测绘与地理信息学院,同济大学智能型新能源汽车协同创新中心,同济大学测绘与地理信息学院,同济大学测绘与地理信息学院,同济大学测绘与地理信息学院

中图分类号:

TP391

基金项目:

高分综合交通遥感应用示范系统(第一期),07-Y30B10-9001-14/16


Container Code Recognition from Images with Large Perspective Deformation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [9]
  • | | |
  • 文章评论
    摘要:

    针对存在大角度透视变形的集装箱图像,提出一种新的集装箱箱号识别方法.首先对图像进行透视变换校正,然后利用深度卷积神经网络模型定位并识别出集装箱图像中的26个大写英文字母和10个阿拉伯数字,最后利用集装箱箱号的先验知识,通过级联决策规则从候选字符集中识别出集装箱箱号.此方法应用于重庆港集装箱1 035张实景图像,箱号识别精度达97%,基于NVIDIA GeForce GTX1080图形处理器加速的箱号识别速度为每秒2~5帧.

    Abstract:

    A novel method is proposed in this paper to recognize the container code from the images with large perspective deformation. First, the images are rectified by perspective transformation. Then, 26 capitalized English characters and 10 Arabic numerals are located and recognized based on the deep convolution neural network model. Finally, container codes are recognized from the candidate character set by cascade decision rules based on the priori knowledge of container code. The proposed method is verified by 1035 container images taken in Chongqing Port. The result shows that the accuracy of container code recognition reaches 97%, and the speed based on NVIDIA GeForce GTX1080 GPU is 2 to 5 frames/sec.

    参考文献
    [1]X. Chen and A. L. Yuille. Detecting and reading text in natural scenes. CVPR, 2:366–373, 2004.
    [2]L. Jung-Jin, P.-H. Lee, S.-W. Lee, A. Yuille, and C. Koch.Adaboost for text detection in natural scene. In ICDAR 2011,pages 429–434, 2011.
    [3]B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural scenes with stroke width transform. In CVPR 2010, pages 2963 –2970.
    [4]Y.-F. Pan, X. Hou, and C.-L. Liu. Text localization in natural scene images based on conditional random field. In ICDAR 2009, pages 6–10. IEEE Computer Society, 2009.
    [5]L. Neumann and J. Matas. A method for text localization and recognition in real-world images. In Proc. of ACCV, 2010.
    [6]A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang, D. J. Wu, and A. Y. Ng. Text detection and character recognition in scene images with unsupervised feature learning. In Proc. of ICDAR, 2011.
    [7]T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition with convolutional neural networks. In Proc. of ICPR, 2012.
    [8]Y. Lecun, L. Bottou, Y. Bengio, et al. Gradient-Based Learning Applied to Document Recognition. In Proc. of the IEEE, 1998(86):11.
    [9]M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features for text spotting. In Proc. of ECCV, 2014.
    [10]C. Y. Lee, A. Bhardwaj, W. Di, V. Jagadeesh, and R. Piramuthu. Region-based discriminative feature pooling for scene text recognition. In Proc. of CVPR, 2014.
    [11]C. Yao, X. Bai, B. Shi, and W. Liu. Strokelets: A learned multi-scale representation for scene text recognition. In Proc. of CVPR, 2014.
    [12]Shaoqing Ren, Kaiming He, Ross Girshick, et al. Faster R-cnn: Towards real-time object detection with region proposal networks[J]. arXiv, 2016.
    [13]Kye-Hyeon Kim, Sanghoon Hong, Byungseok Roh, Yeongjae Cheon, Minje Park. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection. arXiv:1608.08021.
    [14]Matthew D.Zeiler, Rob F. Visualizing and understanding convolutional networks[J]. ArXiv, 2013.
    [15]R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,2015, pp. 1440–1448.
    [16]Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS. vol. 1, p. 4 (2012)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张绍明,毛艺凡,王建梅,冯甜甜.大角度透视变形集装箱图像箱号识别方法[J].同济大学学报(自然科学版),2019,47(02):0285~0290

复制
分享
文章指标
  • 点击次数:1476
  • 下载次数: 982
  • HTML阅读次数: 1694
  • 引用次数: 0
历史
  • 收稿日期:2017-09-11
  • 最后修改日期:2018-10-03
  • 录用日期:2018-11-28
  • 在线发布日期: 2019-02-28
文章二维码