长江水系沉积物碎屑石榴石化学组成及物源示踪
CSTR:
作者:
作者单位:

青岛海洋地质研究所,同济大学,青岛海洋地质研究所,青岛海洋地质研究所

中图分类号:

P587

基金项目:

国家自然科学基金项目(No. 41730531,41376049,41206053)、中国地质调查局海洋地质调查项目(No. GZH201400201和DD20160137)、上海市优秀学科带头人计划支持 (No. 14XD1403600)和刘宝珺地学青年科学基金(No. DMSM201724)联合资助


Detrital Garnet Chemistry of the Changjiang (Yangtze River) Sediments and Their Provenance Implication
Author:
  • WANG Zhongbo

    WANG Zhongbo

    Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Shouye

    YANG Shouye

    State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MEI Xi

    MEI Xi

    Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Kai

    LU Kai

    Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    长江流域主要干流和支流碎屑沉积物中的单颗粒石榴石化学组成分析显示,石榴石元素组成以SiO2、FeO、Al2O3、MnO、CaO、MgO、TiO2为主,石榴石组合主要是镁铝榴石、铁铝榴石、钙铝榴石和锰铝榴石,其平均物质的量分数分别是65.4%、13.8%、9.4%和11.5%.利用石榴石GPAS物源分析方法,可以识别出长江流域的特征石榴石组合.长江水系沉积物中碎屑石榴石呈低Mg、高Mn特征,其源岩以中低级变质岩为主,长江流域出露的片岩、千枚岩和大理岩以及低温接触变质岩控制了沉积物石榴石的组成.金沙江是长江入海粗粒沉积物的主要来源,石榴石组合呈现为典型的低Mg、高Mn特征,与整个长江干流石榴石组成一致,但由于未受到中下游近源沉积物影响,其石榴石组合可以作为长江特征物源端元,用以中国东部海域沉积物物源示踪.

    Abstract:

    This study presents the compositions of major oxides including SiO2, FeO, Al2O3, MnO, CaO, MgO and TiO2 in the detrital garnet grains separated from the sediments of the Changjiang River and its major tributaries. The main garnet assemblage consists of almandine, grossularite, Grossular and spessartine, with the mean contents of 65.4%, 13.8%, 9.4% and 11.5%, respectively. The typical garnet assemblage of Changjiang sediments on the GPAS triangular diagram is characterized by low Mg and high Mn contents, which suggests they are mainly sourced from intermediate and lowgrade metasedimentary rocks. These garnet compositions are primarily determined by the widely distributed schist, phyllite, marble and the lowtemperature and lowpressure contact metamorphic rocks in the Changjiang catchment. Our data also suggests that the Jinshajiang River as the largest tributary in the upper drainage is the major supply of fine sands to the Changjiang mainstream. Similar to the average composition of the whole Changjiang sediments, the garnets of Jinshajiang are characterized by low Mg and high Mn contents, but much different to those of the middle and lower reaches. Therefore, the garnet assemblage of the Jinshajiang can indicate the contribution of Changjiang fine sand in the sediments provenance study of East China marginal seas.

    参考文献
    [1] 孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质,1990, 10(3):23.SUN Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang river delta sediments [J]. Marine Geology Quaternary Geology, 1990, 10(3):23.
    [2] 王中波,杨守业,李萍,等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报,2006, 24(4):570.WANG Zhongbo, YANG Shouye, LI Ping, et al. Detrital mineral compositions of the Changjiang River sediments and their tracing implications[J]. Acta Sedimentologica Sinica, 2006, 24(4):570.
    [3] SCHNEIDERMAN J S, CHEN Z Y. Interpretation of Quaternary tectonic and environmental change using heavy minerals of the Yangtze Delta plain[J]. Developments in Sedimentology, 2007, 58:607.
    [4] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学—中国地质大学学报,2009, 34(3):419.KANG, Chunguo LI Chang’an, WANG Jietao, et al. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges[J]. Earth Science- Journal of China University of Geosciences, 2009, 34(3):419.
    [5] YANG S Y, WANG Z B, GUO Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1):56.
    [6] HE M Y, ZHENG H B, HUANG X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60.
    [7] WANG Q, YANG S Y. Clay mineralogy indicates the Holocene climate in the Changjiang (Yangtze River) catchment, China[J]. Applied Clay Science, 2013, 74: 28.
    [8] YANG S Y, JIANG S Y, LING H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: implications for tracing sediment sources[J]. Sciences China (Series D: Earth Sciences), 2007, 50(10):1556.
    [9] ZHANG W G, MA H L, YE L P, et al. Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposit in northern Jiangsu Plain, China[J]. Marine Geology, 2012, 319-322: 47.
    [10] WU W H, ZHENG H B, XU S J, et al. Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River[J]. Journal of Geochemical Exploration, 2013, 124: 67.
    [11] 邵磊,李长安,张玉芬,等. 长江上游水系沉积物锶-钕同位素组成及物源示踪[J]. 沉积学报,2014, 32(2):290.SHAO Lei, LI Chang’an, ZHANG Yufen, et al. Sr-Nd isotopic compositions of the upper Yangtze River sediments: implications for tracing sediment sources [J]. Acta Sedimentologica Sinica, 2014, 32(2):290.
    [12] 杨建,李长安,N’dji J.D.,等.峨眉山玄武岩作为长江上游特征源岩对三峡贯通的指示. 地球科学—中国地质大学学报,2014, 39(4):431.YANG Jian, LI Chang’an, N’DJI J D, et al. Emeishan Basalt as provenance indicators: implications for Formation of the Three Gorges[J]. Earth Science- Journal of China University of Geosciences, 2014, 39(4): 431.
    [13] XU K H, MILLIMAN J D, LI A C, et al. Yangtze- and Taiwan- derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 18: 2240.
    [14] LIU J, SAITO Y, KONG XH, et al. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~13000 years, with special Reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29: 17.
    [15] GU J W, CHEN J, SUN Q L, et al. China’s Yangtze delta: geochemical fingerprints reflecting river connection to the sea[J]. Geomorphology, 2014, 227: 166.
    [16] SHAO H B, YANG S Y, WANG Q, et al. Discriminating hydrothermal and terrigenous clays in the Okinawa Trough, East China Sea: evidences from mineralogy and geochemistry[J]. Chemical Geology, 2015, 386: 85.
    [17] BI L, YANG S Y, ZHAO Y, et al. Provenance study of the Holocene sediments in the Changjiang (Yangtze River) estuary and inner shelf of the East China Sea[J]. Quaternary International, 2017, 441 (part A): 147.
    [18] 贾军涛,郑洪波,杨守业.长江流域岩体的时空分布与碎屑锆石物源示踪[J]. 同济大学学报(自然科学版),2010, 38(9):1375.JIA Juntao, ZHENG Hongbo, YANG Shouye. Rock types in Yangtze drainage and their implication for zircon U-Pb provenance study of Yangtze sediments[J]. Journal of Tongji University (Natural Science), 2010, 38(9): 1375.
    [19] 杨守业,韦刚建,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015, 34(5): 902.YANG Shouye, WEI Gangjian, SHI Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy’ petrology and Geochemistry, 2015, 34(5): 902.
    [20] VEZZOLI G, GARZANTI E, LIMONTA M, et al. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology, 2016, 261:177.
    [21] MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstone [J]. Sedimentary Geology, 1999, 124: 3.
    [22] WELTJE G J, EYNATTEN H. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171: 1.
    [23] SABEEN H M, RAMANUJAM N, MORTON AC. The provenance of garnet: constraints provided by studies of coastal sediments from southern India[J]. Sedimentary Geology, 2002, 152: 279.
    [24] WELTJE G J. Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology[J]. Earth Science Review, 2002, 57: 211.
    [25] HOUNSLOW M W, MORTON A C. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: comparison with heavy mineral analysis[J]. Sedimentary Geology, 2004, 171(1): 13.
    [26] GARZANTI E, ANDò S, FRANCE-LANORD C, et al. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga–Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 2010, 299: 368.
    [27] DENG K, YANG S Y, LI C, et al. Detrital zircon geochronology of river sands from Taiwan: implication for sedimentary provenance and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164: 34.
    [28] MORTON A C, HALLSWORTH C R, CHALTON B. Garnet compositions in Scottish and Norwegian basement terrains: a framework for interpretation of North Sea sandstone province[J]. Marine and Petroleum Geology, 2004, 21:393.
    [29] HALLSWORTH C, CHISHOLM J I. Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies[J]. Sedimentary Geology, 2008, 203: 196.
    [30] 王中波,杨守业,王红霞,等. 南黄海表层沉积物石榴石化学组成及其物源示踪[C]//中国地质地球物理研究进展. 金翔龙,秦蕴珊,朱日祥,等. 北京:海洋出版社,2009,587.WANG Zhongbo, YANG Shouye, WANG Hongxia, et al. The garnet compositions of the surface sediments in the South Yellow Sea and their tracing implciaitons[C]//The Geology and Geophysics Progresses of China. JIN Xianglong, QIN Yunshan, ZHU Rixiang, et al. Beijing: Ocean Press, 2009, 587.
    [31] MORTON A, MEINHOLD G, HOWARD J P, et al. A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: contstraints on provenance and stratigraphic correlation[J]. Journal of African Earth Sciences, 2011, 61: 308.
    [32] KRIPPNER A, MEINHOLD G, MORTON A C, et al. Evolution of garnet discrimination diagrams using geochemical data derived from various host rocks[J]. Sedimentary Geology, 2014, 306: 36.
    [33] SIRCOMBEA K N. Quantitative comparison of large sets of geochronological data using multivariate analysis: a provenance study example from Australia[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1593.
    [34] SIRCOMBEA K N, HAZELTON M L. Comparison of detrital zircon age distributions by kernel functional estimation[J]. Sedimentary Geology, 2004, 171: 91.
    [35] 杨蓉,Diane Seward,周祖翼.长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,2010, 30(6):73.YANG Rong, DIANE S, ZHOU Zuyi. Provenance study by U-Pb dating of the detrital zircons in the Yangtze River[J]. Marine Geology Quaternary Geology, 2010, 30(6): 73.
    [36] 王扬扬,范代读. 长江流域岩体锆石U-Pb年龄与Hf同位素特征及沉积物源示踪意义[J]. 海洋地质与第四纪地质,2013, 33(5): 97.WANG Yangyang, FAN Daidu. U-Pb ages and Hf isotopic composition of crystalline zircons from igneous rocks of the Changjiang drainage basin and their implications for provenance[J]. Marine Geology Quaternary Geology, 2013, 33(5): 97.
    [37] HE M Y, ZHENG H B, BOOKHAGEN B, et al. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb zircon dating[J]. Earth-Science Reviews, 2014, 136: 121.
    [38] 杨守业,李从先,朱金初,等. 长江与黄河沉积物中磁铁矿成分标型意义[J]. 地球化学,2000,29(5): 480.YANG Shouye, LI Congxian, ZHU Jinchu, et al. Provenance indicator of chemical fingerprint of magnetite from the Yangtze River and the Yellow River sediments[J]. Geochimica, 2000, 29(5): 480.
    [39] 王中波,杨守业,王汝成,等. 长江河流沉积物磁铁矿化学组成及其物源示踪[J]. 地球化学,2007,36(2):176.WANG Zhongbo, YANG Shouye, WANG Rucheng, et al. Magnetite compositions of Changjiang River sediments and their tracing implications[J]. Geochimica, 36(2): 176.
    [40] BERNSTEIN S, FREI D, MCLIMANS RK, et al. Application of CCSEM to heavy mineral deposits: Source of high-Ti ilmenite sand deposits of South Kerala beaches, SW India[J]. Journal of Geochemical Exploration, 2008, 96: 25.
    [41] COPJAKOVA R, SULOVSKY P, PATERSON B A. Major and trace elements in pyrope- almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif[J]. Lithos, 2005, 82: 51.
    [42] MANGE M A, MORTON A C. Geochemistry of heavy minerals[J]. Developments in Sedimentary, 2007, 55: 345-391
    [43] TAKEUCHI M, KAWAI M, MATSUZAWA N. Detrital garnet and chromian spinel chemistry of Permian clastics in the Renge area, central Japan: Implications for the paleogeography of the East Asian continental margin[J]. Sedimentary Geology, 2008, 212: 25.
    [44] SUGGATE S M, HALL R. Using detrital garnet compositions to determine provenance: a new compositional database and procedure. In: Scott RA, Morton AC, Richardson N (ed.). Sediment Provenance Studies in Hydrocarbon Exploration and Production. London: Geological Society of London, Special Publication. 2013, 386(1):373.
    [45] MORTON A C. A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea[J]. Sedimentology, 1985, 32: 553.
    [46] 李双建,石永红,王清晨. 碎屑重矿物分析对库车坳陷白垩-第三纪物源变化的指示[J]. 沉积学报,2006, 24(1):28.LI Shuangjia, SHI Yonghong, WANG Qingchen. The analysis of detrital heavy minerals in Cretaceous- Tertiary sandstones, Kuqa Depression and their implications for provenance [J]. Acta Sedimentologica Sinica, 2006, 24(1):28.
    [47] KRIPPNER A, MEINHOLD G, MORTON A C, et al. Heavy minerals and garnet geochemistry of stream sediments and bedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications for provenance analysis[J]. Sedimentary Geology, 2016, 336: 96.
    [48] QU C H, Zheng J X, Yang S J, et al. Element composition and influencing factors of suspended matter in lower reaches of Huanghe, Changjiang and Zhujiang rivers[J]. Science Bulletin, 1985, 30(8):1078.
    [49] 汤朝阳,朱应华,白云山.长江源区变质岩带及研究意义[J]. 资源环境与工程, 2006, 20(4):354.TANG Chaoyang, ZHU Yinghua, BAI Yunshan. Metamorphic belt of Yangtze River source area and its geological significance[J]. Resources Environment Engineering, 2006, 20(4):354.
    [50] LUO C, ZHENG H B, TADA R, et al. Tracing Sr isotopic composition in space and time across the Yangtze River basin[J]. Chemical Geology, 2014, 388: 59.
    [51] 中国科学院长春地理研究所.长江水体环境背景值研究图集[M]. 北京:科学出版社,1998, 6.Changchun Institute of Geography, CAS. Atlas of study on background value of aquatic environment of the Changjiang river valley[M]. Beijing: Science Press, 1998, 6.
    [52] HAN G L, TANG Y, XU Z F. Fluvial geochemistry of rivers draining karst terrain in Southwest China[J]. Journal of Asian Earth Sciences, 2010, 38: 65.
    [53] 张君,李长安,孙习林.乌江流域中-新生代以来构造运动的碎屑磷灰石裂变径迹证据[J]. 地质论评,2013, 59(3):537.ZHANG Jun, LI Chang’an, SUN Xilin. The detrital apatite fission-track evidence for tectonic processes since Mesozoic- Cenozoic in Wujiang River catchments[J]. Geological Review, 2013, 59(3):537-543
    [54] 吴应科,卢东华,梁永平. 长江流域岩溶区资源的开发利用. 中国岩溶,1989, 8(2):107.WU Yingke, LU Donghua, LIANG Yongping. Development and utilization of natural resources in Karst areas of the Yangtze River basin[J]. Carsologica Sinica, 1989, 8(2):107.
    [55] 张连凯,覃小群,刘朋雨,等.硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报,2016, 90(8):1933.ZHANG Liangkai, TAN Xiaoqun, LIU Pengyu, et al. Chemical denudation rate and atmospheric CO2 consumption by H2CO3 and H2SO4 in the Yangtze River catchment[J]. Acta Geologica Sinica, 2016, 90(8):1933.
    [56] 马玉孝,刘家铎,王洪峰. 攀枝花地质[M]. 成都:四川科学技术出版社,2001, 367.MA Yuxiao, LIU Jiaduo, WANG Hongfeng. Geology of the Panzhihua Region[M]. Chengdu: Sichuan Science and Technology Press, 2001, 367.
    [57] GANINO C, ARNDT N T, ZHOU M F, et al. Interaction of magama with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China[J]. Mineral Deposition, 2008, 43: 677.
    [58] 邢长明,王焰,张铭杰. 攀西地区超大型钒钛磁铁矿矿床挥发组成及其C-H-O稳定同位素研究:对挥发份来源和矿石成因的约束[J]. 中国科学:地球科学,2012, 42(11):1782.XING Changming, WANG Yan, ZHANG Mingjie. Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores[J]. Science China: Earth Sciences, 2012, 55: 1782.
    [59] 张国伟,董云鹏,姚安平. 秦岭造山带基本组成与结构及其构造演化[J]. 陕西地质,1997, 15(2): 1.ZHANG Guowei, DONG Yunpeng, YAO Anping. The crustal compositions, structures and tectonic evolution of the Qinling orogenic belt[J]. Geology of Shaanxi, 1997, 15(2): 1.
    [60] WU Y B, ZHENG Y F. Tectonic evolution of a composite collision orogeny: an overview on the Qinling-Tongbai-Hongan-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23:1402.
    [61] 周敬臣. 汉江干流夹河以下河段工程地质特征分析[J]. 长江水利教育,1996, 13(4):46.ZHOU Jingchen. The engineering geological characteristics analysis of the Jiahe part in Hanjiang[J]. Yantze River Water Conservancy Education, 1996, 13(4):46.
    [62] 张本仁,韩吟文,徐继锋,等. 北秦岭新元古代前属于扬子板块的地球化学证据[J]. 高等地质学报,1998, 4(4):369.ZHANG Benren, HAN Yinwen, XU Jifeng, et al. Geochemical evidence for north Qinling bing a part of Yangtze Plate prior to the Neoproterozoic[J]. Geological Journal of China Universities, 1998, 4(4):369.
    [63] 万天丰. 中朝与扬子板块的鉴定特征[J]. 地质论评,2001, 47(1):57.WAN Tianfeng. Distinctive characteristics of Sino-Korean and Yangtze Plates[J]. Geological Review, 2001, 47(1):57.
    [64] YANG S Y, JUNG H S, CHOI M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002, 201:407.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王中波,杨守业,梅西,陆凯.长江水系沉积物碎屑石榴石化学组成及物源示踪[J].同济大学学报(自然科学版),2018,46(10):1455~1461

复制
分享
文章指标
  • 点击次数:1020
  • 下载次数: 734
  • HTML阅读次数: 691
  • 引用次数: 0
历史
  • 收稿日期:2017-11-06
  • 最后修改日期:2018-08-24
  • 录用日期:2018-05-31
  • 在线发布日期: 2018-11-09
文章二维码