基于自然驾驶研究的直行追尾危险场景诱导因素分析
CSTR:
作者:
作者单位:

同济大学,同济大学,国家机动车产品质量监督检验中心(上海)

中图分类号:

U46

基金项目:

上海市科委研发平台项目(16DZ2291000)


Analysis of Causation of RearEnd Incidents Based on Naturalistic Driving Study
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于中国自然驾驶工况数据,筛选了直行追尾危险工况,通过修正的DREAM(driving reliability and error analysis method)方法进行了诱导因素分析.对直行追尾危险场景依据车辆行驶特点进行了场景细分,分析了不同场景细分类型下诱导因素逻辑图.结果表明,在直行追尾场景中驾驶员的“力度不足”和“距离过短”为占比最高的紧急事件(危险特征),并分析了追尾场景中4个细分类型对应的紧急事件特点.研究发现,中国驾驶员的驾驶习惯与欧美有较大差别,直行追尾危险场景中最主要的深层诱导因素为驾驶员习惯性期待他车特定驾驶行为等不良驾驶习惯,而不是在驾驶过程中与驾驶操纵无关的第二行为.

    Abstract:

    Based on the rear-end incidents extracted from the China naturalistic driving data, the DREAM (driving reliability and error analysis method) was modified and used to identify contribution factors and causation patterns in these incidents. Those rearend incidents were respectively classified in different driving scenarios, and the logic diagrams of the contribution factors with different detailed categories were obtained. The results showed that the main factors behind the rearend incidents was the adoption of “insufficient force” and “small safety margins”. The characteristics of critical events of four detail categories in the rearend scenarios were also analyzed. In contrast to the results obtained from previous studies in the US and Europe, the deepseated contribution factors was driver’s habitual expectation for the specific driving behavior of other traffic users, instead of the second driving behavior.

    参考文献
    [1]Engstr?m J, Werneke J, B?rgman J, et al. Analysis of the role of inattention in road crashes based on naturalistic on-board safety monitoring data[C] // International Conference on Driver Distraction and Inattention. 2013:17-20.
    [2]Dingus T A, Klauer S, Neale V, et al. The 100-car naturalistic driving study: Phase II-results of the 100-car field experiment[R]. National Highway Traffic Safety Administration (NHTSA). 2006.
    [3]郭忠印. 道路安全工程[M]. 人民交通出版社, 2012.
    [4]李方媛. 重特大道路交通事故致因机理及其风险行为研究[D]. 长安大学, 2014.
    [5]Warner, H. W., Ljung, M., Sandin, J., et al. Manual for DREAM 3.0, Driving Reliability and Error Analysis Method. Deliverable D5.6 of the EU FP6 project SafetyNet, TREN-04-FP6TRSI2. 395465/506723[J]. 2008.
    [6]Sun X, Zhu X, Zhang K, et al. Automatic detection method research of incidents in China-FOT database[C]// IEEE, International Conference on Intelligent Transportation Systems. IEEE, 2016:754-759.
    [7]Najm, W. G., Smith, J. D., Yanagisawa, M. Pre-Crash Scenario Typology for Crash Avoidance Research[J]. Dot Hs, 2007:767.
    [8]Seiniger P, Bartels O, Langner T, et al. Development of a target propulsion system for assess [C]// 2011.
    [9]Antin J, Lee S, Hankey J, et al. Design of the In-Vehicle Driving Behavior and Crash Risk Study: In Support of the SHRP 2 Naturalistic Driving Study[R]. Transportation Research Board of the National Academies, 2011.
    [10]Sagberg F, Eenink R, Hoedemaeker M, et al. Recommendations for a large-scale European naturalistic driving observation study, PROLOGUE Deliverable D4.1[R]. Seventh Framework Programme Theme 7 Transport, 2011.
    [11]Bianchi G P, Engstr?m J, B?rgman J, et al. Factors contributing to commercial vehicle rear-end conflicts in China: A study using on-board event data recorders. [J]. Journal of Safety Research, 2017, 62.
    [12]Knipling R R, Mironer M, Hendricks D L, et al. Assessment of IVHS Countermeasures for Collision Avoidance: Rear-End Crashes[J]. Development, 1993.
    [13]B?rgman J. Methods for Analysis of Naturalistic Driving Data in Driver Behavior Research. [D]. Goteborg: Chalmers University of Technology.
    [14]Warner, H. W., Sandin, J. The intercoder agreement when using the Driving Reliability and Error Analysis Method in road traffic accident investigations.[J]. Safety Science, 2010, 48(5):527-536.
    [15]Habibovic A, Tivesten E, Uchida N, et al. Driver behavior in car-to-pedestrian incidents: An application of the Driving Reliability and Error Analysis Method (DREAM) [J]. Accident Analysis Prevention, 2013, 50: 554-565.
    [16]Tivesten E. Understanding and prioritizing crash contributing factors Analyzing naturalistic driving data and self-reported crash data for car safety development[J]. Chalmers University of Technology, 2014.
    [17]Engstr?m J, B?rgman J, Nilsson D, et al. Great expectations: a predictive processing account of automobile driving[J]. Theoretical Issues in Ergonomics Science, 2017(1):1-39.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴斌,朱西产,沈剑平,孙晓宇.基于自然驾驶研究的直行追尾危险场景诱导因素分析[J].同济大学学报(自然科学版),2018,46(09):1253~1260

复制
分享
文章指标
  • 点击次数:1476
  • 下载次数: 1042
  • HTML阅读次数: 576
  • 引用次数: 0
历史
  • 收稿日期:2017-11-14
  • 最后修改日期:2018-06-27
  • 录用日期:2018-06-11
  • 在线发布日期: 2018-10-17
文章二维码