数据探测法中的粗差误判分析
CSTR:
作者:
作者单位:

同济大学 测绘与地理信息学院,上海 200092,同济大学

中图分类号:

P2

基金项目:

国家自然科学基金委青年基金项目(41504022)


Separability Analysis for Baarda Data Snooping Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    重点讨论了数据探测法中系统发生误警、漏检和误判的原因.探讨了3类错误与检验量间相关系数的函数关系,给出了在多个备选假设下3类错误发生概率的估计公式.以2个备选假设为例,通过仿真模拟计算了3类错误发生概率随统计量间相关系数的变化趋势,并证明当观测值统计量间强相关时,数据探测法发生误警的概率显著增加,从而导致最小可探测粗差理论值与实际值不符,降低了数据探测法的可信度及系统的可靠性.最后利用2个不同网形的算例验证了结论.

    Abstract:

    The Baarda’ data snooping method detects the outlier by making decision between the null and alternative hypotheses. Based on this method, usually only the false alert and missed detection were considered and the possibilities were defined for the minimal detectable bias (MDB). Nevertheless, in practical application, there are always multiple alternative hypotheses. Therefore, a third type error  wrong exclusion  occurs, which was caused by the correlation between two test statistics. The probabilities of false alert, missed detection, wrong exclusion can be considered as functions of the correlation coefficient. Monte Carlo methods were used to calculate the possibilities of these three types of errors with different correlation coefficients for two alternative hypotheses. It has proved that when the correlation is high the probability of committing wrong exclusion increases exponentially. As a result, the discrepancy between the theoretical and realistic MDB values enlarges, and accordingly the confidence level and the system reliability decrease. Finally, numerical experiments were conducted to analyze and compare the performance of two examples with different geometry conditions.

    参考文献
    [1] 周江文. 经典误差理论与抗差估计[J] . 测绘学报, 1989, 12(2):115-120.
    [2] 欧吉坤. 粗差的拟准检定法(QUAD法)[ J]. 测绘学报, 1999, 23(1):15-20.
    [3] 欧吉坤. 一种三步抗差方案的设计[J]. 测绘学报, 1996, 23(1):15-20.
    [4] 於宗俦, 李明峰. 多维粗差的同时定位与定值[ J] . 武汉测绘科技大学学报, 1996, 21(4):323-329.
    [5] 於宗俦. 李明峰. 对LEGE法性质的进一步讨论及其改进搜索方法[J] .武汉测绘科技大学学报, 1998, 23(3):244-247.
    [6] Yang L, Li Y, Wu Y. Efficient quality control procedure for GNSS/INS integrated navigation system[C] 中国卫星导航学术年会. 2013:673-684.
    [7] Wang J., Knight N. L. (2012) New outlier separability test and its application in GNSS positioning. Journal of Global Positioning Systems, 11:46-57.
    [8]Yang L., Li Y., Wu Y.L., & Rizos C. (2014) An enhanced MEMS-INS/GNSS integrated system with fault detection and exclusion capability for land vehicle navigation in urban areas. GPS Solutions, 18(4): 593-603.
    [9] Baarda W. (1968) A testing procedure for use in geodetic networks. Netherland Geodetic Commission, vol 2, issue 5 (ISBN-13: 9789061322092, ISBN-10: 906132209X).
    [10] 孙海燕, 黄华兵, 王喜娜. 多维平差问题粗差的局部分析法[J]. 测绘学报, 2012, 41(1):54-58.
    [11] 杨元喜. 抗差估计理论及其应用[M]. 八一出版社, 1993.
    [12] Yang Y, Song L, Xu T. Robust estimator for correlated observations based on bifactor equivalent weights[J]. Journal of Geodesy, 2002, 76(6):353-358.
    [13] Teunissen P.J.G. (2000) Testing theory, an introduction. Delft: Delft University Press, 2000.
    [14] 鲁铁定. 几种粗差估值方法的比较[J]. 测绘学报, 2016, 45(6): 656-662.
    [15] 王海涛, 欧吉坤, 袁运斌,等. 估计观测值粗差三种方法的等价性讨论[J]. 武汉大学学报(信息科学版), 2013, 38(2):162-166.
    [16] 刘文生, 唐守路. 稳健估计的两种粗差探测方法[J]. 辽宁工程技术大学学报, 2016(1):54-58.
    [17] 杨玲, 沈云中, 楼立志. 基于中位参数初值的等价权抗差估计方法[J]. 测绘学报, 2011, 40(1): 28-32.
    [18] 李博峰, 沈云中. 基于等效残差积探测粗差的方差-协方差分量估计[J]. 测绘学报, 2011, 40(1):10-14.
    [19] Li D.R. (1986) Trennbarkeit und Zuverl?ssigkeit bei zwei verschiedenen alternativhypothesen im Gau?–Markoff-Modell, vol 3. Zeitschrift für Vermessungswesen, Heft
    [20] 岑敏仪, 卓健成, 李志林, 晓利. 判断观测值粗差能否发现和定位的一种验前方法[J]. 测绘学报, 2003, 32(2):134-138.
    [21] 李德仁. 误差处理和可靠性理论[M]. 北京:测绘出版社, 1988.
    [22] 陶本藻. 姚宜斌.可靠性分析与数据探测[J]. 武汉大学学报:信息科学版, 2002, 27(6):607-609.
    [23] Knight N.L., Wang J., Rizos C. (2010) Generalised measures of reliability for multiple outliers[J]. Journal of Geodesy, 84(10), 625–635.
    [24] F?rstner W. (1983) Reliability and discernability of extended Gauss-Markov models. In: Seminar on Mathematical Models to Outliers and Systematic Errors, Deutsche Geod?tische Kommision, Series A, no. 98, Munich, Germany, ISSN: 978376681802, 79-103.
    [25] Yang L., Wang J., Knight N.L., Shen Y. (2013) Outlier separability analysis with a multiple alternative hypotheses test[J]. Journal of Geodesy, 87(6), 591-604.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨玲,喻杨康.数据探测法中的粗差误判分析[J].同济大学学报(自然科学版),2018,46(10):1440~1447

复制
分享
文章指标
  • 点击次数:1941
  • 下载次数: 1010
  • HTML阅读次数: 577
  • 引用次数: 0
历史
  • 收稿日期:2017-11-16
  • 最后修改日期:2018-08-24
  • 录用日期:2018-06-27
  • 在线发布日期: 2018-11-09
文章二维码