基于场景模型的双目相机动态检校方法
CSTR:
作者:
作者单位:

同济大学 测绘与地理信息学院,上海 200092,同济大学 测绘与地理信息学院,上海 200092,同济大学 测绘与地理信息学院,上海 200092

中图分类号:

P232

基金项目:

“十三五”国家科技支撑计划(2016YFB0502102,2016YFB0502104);国家自然科学基金(41771481,41671451)


Dynamic Stereo-camera Calibration with Infrastructure Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种基于场景模型的双目相机内、外方位元素的动态检校方法.初始检校过程构建了场景全局三维模型并以此为基础分别初步解算内、外方位元素,然后进行联合优化;更新检校过程利用已建立的场景模型,恢复场景模型与影像的关联,再通过联合优化更新相机的检校参数.实际场景实验验证结果表明:该方法的检校完整度优于基于即时定位和地图构建(SLAM)的检校方法,精度优于传统棋盘格检校方法.

    Abstract:

    A scene model based stereo-camera calibration method is presented in this paper. The initial calibration process firstly constructs a global scene model, and based on this, both intrinsic and extrinsic parameters of the stereocamera are estimated separately and optimized jointly. The update calibration utilizes the established scene model to restore three dimentiontwo dimention relation between model coordinate and image coordinate, with the relation, stereocamera parameters are updated through joint optimization. The experiments in realworld show that the method calibrates all the parameters while SLAMbased method only solves a part, and the accuracy of the method is better than the chessboard based method.

    参考文献
    [1] 张梁,徐锦法,夏青元等.双目立体视觉的无人机位姿估计算法及验证[J].哈尔滨工业大学学报,2014,46(5): 66-72.ZHANG Liang,XU Jinfa,XIA Qingyuan. Pose estimation algorithm and verification based on binocular stereo vision for unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology,2014,46(5): 66-72.
    [2] 刘昱岗,王卓君,王福景等.基于双目立体视觉的倒车环境障碍物测量方法[J].交通运输系统工程与信息,2016,16(4):79-87.LIU Yugang, WANG Zhuojun, WANG Fujing, et al. Vehicle Reversing Obstacle Measurement Based on Binocular-camera Stereo Vision[J]. Journal of Transportation Systems Engineering and Information Technology, 2016,16(4):79-87.
    [3] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations[C]// The Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra GreeceS: IEEE, 1999: 666-673.
    [4] Geiger A, Moosmann F, Car ?, et al. Automatic camera and range sensor calibration using a single shot[C]// International Conference on Robotics and Automation. Saint Paul USA: IEEE, 2012: 3936-3943.
    [5] Carrera G, Angeli A, Davison A J. SLAM-based automatic extrinsic calibration of a multi-camera rig[C]// International Conference on Robotics and Automation. Shanghai China: IEEE, 2011: 2652-2659.
    [6] Heng L, Furgale P, Pollefeys M. Leveraging Image-based Localization for Infrastructure-based Calibration of a Multi-camera Rig[J]. Journal of Field Robotics, 2015, 32(5): 775-802.
    [7] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. UK: Cambridge university press, 2003.
    [8] Hartley R, Trumpf J, Dai Y, et al. Rotation Averaging[J]. International Journal of Computer Vision, 2013, 103(3): 267-305.
    [9] Markley F L, Cheng Y, Crassidis J L, et al. Averaging quaternions[J]. Journal of Guidance Control and Dynamics, 2007, 30(4): 1193.
    [10] Schonberger J L, Frahm J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas USA:IEEE, 2016: 4104-4113.
    [11] 李金岭, 刘鹂, 乔书波, 等. 关于三维直角坐标七参数转换模型求解的讨论[J]. 测绘科学, 2010, 35(4): 76-78.LI Jinlin, LIU Li, QIAO Shubo, et al. Discussion on the determination of transformation parameters of 3D Cartesian coordinates[J]. SCIENCE OF SURVEYING AND MAPPING, 2010, 35(4): 76-78.
    [12] Lepetit V, Moreno-Noguer F, Fua P. Epnp: An Accurate O(n) Solution to the PnP Problem[J]. International Journal of Computer Vision, 2009, 81(2): 155-166.
    [13] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
    [14] Fusiello A, Trucco E, Verri A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications, 2000, 12(1): 16-22.
    [15] Kre?o I, ?egvic S. Improving the egomotion estimation by correcting the calibration bias[C]//Proceedings of the 10th International Conference on Computer Vision Theory and Applications. Berlin Germany: VISAPP, 2015:347-356.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李正宁,刘春,吴杭彬.基于场景模型的双目相机动态检校方法[J].同济大学学报(自然科学版),2018,46(11):1594~1600

复制
分享
文章指标
  • 点击次数:1301
  • 下载次数: 895
  • HTML阅读次数: 939
  • 引用次数: 0
历史
  • 收稿日期:2017-11-17
  • 最后修改日期:2018-09-06
  • 录用日期:2018-08-13
  • 在线发布日期: 2018-11-29
文章二维码