基于离散时间信号相关性的交通事件检测算法
CSTR:
作者:
作者单位:

同济大学,同济大学

中图分类号:

U491.3

基金项目:

国家自然科学基金(71673201)


Automatic Traffic Incident Detection Algorithm based on Discrete Time Signal Correlation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了基于离散时间信号相关性的自动交通事件检测算法。将交通信息数据转化为离散时间信号并进行相关性计算处理,有效定位通过上、下游截面的同一组交通流。解释了相关系数的特征,并采用仿真数据进行性能验证。结果表明:基于离散时间信号相关性的自动交通事件检测算法具有可视性且易于理解,在低饱和交通环境下表现依然稳健,具有很好的适应性。

    Abstract:

    An automatic traffic incident detection algorithm based on discrete time signal correlation was proposed. Traffic information data were converted to discrete-time signals and the correlation was calculated to locate the same traffic stream passing the upper and lower sections. The characteristics of correlation coefficients was explained. The results show that the algorithm is visual and easy to understand. The algorithm performs well under low-saturated traffic conditions and has better adaptability.

    参考文献
    [1] Lindley J A. Urban freeway congestion: Quantification of the problem and effectiveness of potential solutions[J]. ITE Journal, 1987, 57(1):27-32.
    [2] Nation`s top highway official helps Launch New North Carolina Road and traffic information service[J]. 2004, Federal Highway Administration.
    [3] DUDEK C L, MESSER C J, NUCKLES N B. Incident detection on urban freeways[C]//Transportation Research Board. Washington D C: Transportation Research Board, 1974: 12?24.
    [4] PAYNE H J, HELFENBEIN E D, KNOBEL H C. Development and testing of incident detection algorithms[R]. Washington D C, USA: Federal Highway Administration, 1976: 1?20.
    [5] PERSAUD B N, HALL F L. Catastrophe theory and patterns in 30-second freeway traffic data-implication for incident detection[J]. Transportation Research Part A, 1990, 23(2): 103?113.
    [6] SRINIV D, SHARMA V, TOH K A. Reduced multivariate polynomial-based neural network for automated traffic incident detection[J]. Neural Networks, 2008, 21(2/3): 484?492.
    [7] 刘庆华,丁文涛,涂娟娟,方守恩. 优化BP_AdaBoost算法及其交通事件检测[J]. 同济大学学报(自然科学版),2015,43(12):1829-1833.LIU Qinghua, DING Wentao, TU Juanjuan, FANG Shouen. Improved BP_AdaBoost Algorithm and its application in traffic incident detection[J]. Journal of Tongji University: Natural Science, 2015 ,43(12):1829-1833.
    [8] 王武功, 马荣国. 交通事件检测的加权支持向量机算法[J].长安大学学报(自然科学版), 2013, 33(6): 84?87.WANG Wugong, MA Rongguo. Weighed support vector machine for traffic incident detection[J]. Journal of Changan University (Natural Science Edition), 2013, 33(6): 84?87.
    [9] 陈维荣, 关佩, 邹月娴. 基于SVM 的交通事件检测技术[J]. 西南交通大学学报, 2011, 46(1): 63?67.CHEN Weirong, GUAN Pei, ZOU Yuexian. Automatic incident detection technology based on SVM[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 63?67.
    [10]刘志强,吕学,张利. 基于多分类GA-SVM的高速公路AID模型[J]. 系统工程理论与实践,2013,33(08):2110-2115.LIU Zhiqiang, LV Xue, ZHANG Li. Highway automatic incident detection based on multi-class classification and GA-SVM[J]. Systems Engineering- Theory Practice, 2013,33(08):2110-2115.
    [11] CHEN S, WANG W. Decision tree learning for freeway automatic incident detection[J]. Expert Systems with Application,2009,36(2):4101-4105.
    [12] 张轮, 杨文臣, 刘拓. 基于朴素贝叶斯分类的高速公路交通事件检测[J]. 同济大学学报(自然科学版), 2014, 42(4):558?563.ZHANG Lun, YANG Wenchen, LIU Tuo. A naive Bayesian classifier-based algorithm for freeway traffic incident detection[J]. Journal of Tongji University (Natural Science), 2014, 42(4): 558?563.
    [13] 商强,林赐云,杨兆升,等. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版),2017,51(07):1339-1346+1445.SHANG Qiang, LIN Ciyun, YANG Zhaosheng, et al. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of Zhejiang University(Engineering Science) ,2017,51(07):1339-1346+1445.
    [14]龙琼,胡列格,张谨帆,周昭明. 基于尖点突变理论模型的交通事故检测[J]. 土木工程学报,2015,48(09):112-116.LONG Qiong, HU Liege, ZHANG Jinfan, ZHOU Zhaoming. Traffic incident detection based on the cusp catastrophe theory model[J]. China Civil Engineering Journal, 2015,48(09):112-116.
    [15]李红伟,陆键,姜桂艳,马永锋. 快速路交通事件检测方法[J]. 东南大学学报(自然科学版),2013,43(03):649-653.LI Hongwei, LU Jian, JIANG Guiyan, MA Yongfeng. Traffic incident detection algorithm for expressway[J]. Journal of Southeast University(Natural Science Edition), 2013,43(03):649-653.
    [16]牛世峰,姜桂艳,李红伟,姜卉. 基于纵向时间序列的快速路交通事件检测算法[J]. 哈尔滨工业大学学报,2011,43(02):144-148.NIU Shifeng, JIANG Guiyan, LI Hongwei, JIANG Hui. Automated detection algorithm for traffic incident in urban expressway based on lengthways time series of traffic patameters[J]. Journal of Harbin of Technology, 2011,43(02):144-148.
    [17]李琦,姜桂艳,杨聚芬. 基于因子分析与聚类分析的交通事件自动检测算法融合[J]. 吉林大学学报(工学版),2012,42(05):1191-1197.LI Qi, JIANG Guiyan, YANG Jufen. Automatic incident detection algorithms fusion method based on factor analysis and cluster analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(05):1191-1197.
    [18]WANG J, LI X, LIAO S, et al. A hybrid approach for automatic incident detection[J]. IEEE Transaction Intelligent Transportation Systems, 2013,14(3):1176-1185.
    [19]LIU Q, LU J, CHEN S, et al. Multiple Naive Bayes classifiers ensemble for traffic incident detection[J]. Mathematical Problems in Engineering, 2014:1-16.
    [20]窦慧晶,王千龙,张雪. 基于二次相关的广义互相关时差估计算法[J]. 北京工业大学学报,2016,42(02):197-202.DOU Huijing, WANG Qianlong, ZHANG Xue. Generalized cross-correlation algorithm based on secondary relation[J]. Journal of Beijing University of Technology, 2016,42(02):197-202.
    [21]张一闻,刘建平,张世全. 利用多点互相关值均值的实时声源定位算法[J]. 西安电子科技大学学报,2015,42(01):168-173.ZHANG Yiwen, LIU Jianping, ZHANG Shiquan. Real-time acoustic source localization algorithm based on the average of multiple cross correlation values[J]. Journal of Xian University, 2015,42(01):168-173.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙倩,郭忠印.基于离散时间信号相关性的交通事件检测算法[J].同济大学学报(自然科学版),2018,46(11):1508~1513

复制
分享
文章指标
  • 点击次数:1435
  • 下载次数: 911
  • HTML阅读次数: 1073
  • 引用次数: 0
历史
  • 收稿日期:2017-12-02
  • 最后修改日期:2018-09-10
  • 录用日期:2018-06-25
  • 在线发布日期: 2018-11-29
文章二维码