跳扩散模型下亚式期权定价的柳树法研究
CSTR:
作者:
作者单位:

同济大学,同济大学,同济大学

中图分类号:

F832.48

基金项目:

国家自然科学基金项目(No. 71771175)


Efficient Willow Tree Method for Asian Option Pricing Under Merton JumpDiffusion Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    Merton提出的对数跳扩散模型,将股票价格对数构造为布朗运动与复合泊松过程的叠加,能够更好地刻画股票价格回报的负偏度和过高峰度.由于现有的定价亚式期权的数值算法计算复杂、工作量大,因此提出了在Merton跳扩散模型下,亚式期权的快速定价柳树法,并从理论上证明了该算法的收敛性.通过数值实验,表明柳树法与现有方法相比有相同的计算精度,但计算速度更快.

    Abstract:

    The logarithm of the stock price is described as a combination of a Brownian motion and a compound Poisson process in the jump diffusion model proposed by Merton, which can capture the negative skewness and high kurtosis of stock returns observed from the financial market. However, existing methods for the Asian option pricing under the jump diffusion model is quite expensive. Thus, an efficient and accurate willow tree method is proposed in this paper and its theoretical convergence is analyzed. Besides, some numerical experiments are conducted to demonstrate the efficiency and accuracy of the proposed method.

    参考文献
    [1] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of financial economics, 1976, 3(1-2): 125-144.
    [2] Kwang Ik Kim. Convergence of the binomial tree method for Asian options in jump-diffusion models[J]. Journal of Mathematical Analysis and Applications, 2007, 330(1): 10-23.
    [3] d''Halluin Y, Forsyth P A, Labahn G. A semi-Lagrangian approach for American Asian options under jump diffusion[J]. SIAM Journal on Scientific Computing, 2005, 27(1): 315-345.
    [4] Bayraktar,Erhan.PRICING ASIAN OPTIONS FOR JUMP DIFFUSION[J]. Mathematical Finance, 2011, 21(1): 117-143.
    [5] Jan Vecer. Pricing Asian options in a semimartingale model[J]. Quantitative Finance, 2004, 4(2): 170-175.
    [6] Glasserman P. Monte Carlo methods in financial engineering[M]. Springer Science & Business Media, 2013.
    [7] 钱晓松. 跳扩散模型中亚式期权的定价[J]. 应用数学, 2003, 16(4): 161-164.
    QIAN Xiaosong. Valuation of Asian Options in a Jump-diffusion Model[J]. Mathematica Applicata, 2003, 16(4): 161-164.
    [8] 刘宣会, 徐成贤. 基于跳跃-扩散过程的一类亚式期权定价[J]. 系统工程学报, 2008, 23(2): 142-147.
    LIU Xuan-hui,XU Cheng-xian.Asia option pricing based on jump-diffusion prices process[J]. Journal of Systems Engineering, 2008, 23(2): 142-147.
    [9] 张静, 何春雄, 郭艾, 刘文涛. 跳跃-扩散模型下亚式期权的定价[J]. 系统工程, 2010 (12): 96-99.
    Zhang Jing, He Chunxiong, Guo Ai, et al. Pricing Asian Option under the Jump-diffusion Model[J]. Systems Engineering. 2010 (12): 96-99.
    [10] Curran M. Willow power: optimizing derivative pricing trees[J]. Algo Research Quarterly, 2001,4(4):15-24.
    [11] Wei Xu. A new sampling strategy willow tree method with application to path-dependent option pricing[J]. Quantitative Finance, 2013, 13(6): 861-872.
    [12] Ballotta L, Kyriakou I. Convertible bond valuation in a jump diffusion setting with stochastic interest rates[J]. Quantitative Finance, 2015, 15(1): 115-129.
    [13] Johnson N L. Systems of frequency curves generated by methods of translation[J]. Biometrika, 1949, 36(1/2): 149-176.
    [14] I. D. Hill.Algorithm AS 99 : Fitting Johnson Curves by Moments[J] . Journal of the Royal Statistical Society. Series C (Applied statistics), 1976, 25(2): 180-189.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚怡,李帅芳,许威.跳扩散模型下亚式期权定价的柳树法研究[J].同济大学学报(自然科学版),2018,46(12):1761~

复制
分享
文章指标
  • 点击次数:1967
  • 下载次数: 1050
  • HTML阅读次数: 679
  • 引用次数: 0
历史
  • 收稿日期:2018-01-25
  • 最后修改日期:2018-10-29
  • 录用日期:2018-09-10
  • 在线发布日期: 2019-01-04
文章二维码