失效非线性相关的桥梁截面可靠性Vine-Copula数据融合
作者:
作者单位:

兰州大学

作者简介:

通讯作者:

中图分类号:

TU391; TU392.5

基金项目:

国家自然科学基金();甘肃省自然科学基金()


Data Fusion about Vine-Copula for Bridge Section Reliability Considering Nonlinear Correlation of Failure Modes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为合理融合健康监测数据分析在役桥梁截面可靠性,首先应用桥梁截面多个监测点的极值应力数据,建立监测变量非线性相关的VineCopula模型,实现极值应力数据的融合分析;然后结合多个监测点的功能函数,进行桥梁截面失效模式非线性相关的VineCopula建模分析,并融合一次二阶矩(FOSM)方法,分析失效非线性相关的桥梁截面可靠性;最后进行了在役桥梁截面监测数据的验证分析.研究表明,考虑失效模式非线性相关性所得桥梁截面可靠性较不考虑失效模式相关性所得结果小,说明不考虑失效模式相关性所得结果偏保守.

    Abstract:

    Bridge section reliability analysis method is reasonably carried on with the fusion of structural health monitoring data. Firstly, the vinecopula models considering the nonlinear correlation of multiple monitored variables were established based on the extreme stress data at the multiple monitored points of bridge section, which make the extreme stress data fusion achieved. Secondly, the vine copula models considering the nonlinear correlation of failure modes about bridge section were built with the performance functions about the multiple monitored points, further, through combining the built vine copula models with first order second moment (FOSM) method, the bridge section reliability considering the nonlinear correlation of failure modes was analyzed. Finally, the monitored data of an existing bridge was provided to illustrate the proposed model and method. The results show that the obtained bridge section reliability with considering the nonlinear correlation of failure modes is bigger than that without considering the correlation of failure modes. It is illustrated that the obtained results without considering the correlation of failure modes are conservative.

    参考文献
    相似文献
    引证文献
引用本文

刘月飞,樊学平.失效非线性相关的桥梁截面可靠性Vine-Copula数据融合[J].同济大学学报(自然科学版),2019,47(03):0315~0321

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-13
  • 最后修改日期:2018-12-26
  • 录用日期:2018-12-13
  • 在线发布日期: 2019-04-03
  • 出版日期:
文章二维码