检测器误差对路网流量推算影响的灵敏度分析
CSTR:
作者:
中图分类号:

U491

基金项目:

国家自然科学基金项目(51208379),上海市科委科研计划课题(16DZ1203600)


Effect of Sensor Errors on Network Traffic Flow Inference Based on Sensitivity Analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以路网检测器布设可测流问题中检测器误差对路网流量推算的影响为研究对象,采用基于交叉口转弯比的流量守恒方程和网络检测器布设模型,给出灵敏度分析方法并将其作为检测器误差分析的通用方法.将路段流量推算结果受误差源路段检测器误差的影响定义为关键系数,通过理论推导得出,多个误差源路段流量检测器误差对路网流量推算结果的影响为单个误差源路段流量检测器误差影响的线性叠加.最后以方格式路网为实例,采用在路网的只进和只出路段布设检测器两种方案,利用关键系数给出了检测路段流量误差对未检测路段流量推算的影响.

    Abstract:

    The effects of sensor errors on link flow inference in sensor location flowobservability problem are discussed in this paper. By using the equations of traffic flow conservation system and the model of network sensor location problem based on turning ratios at intersections, a general sensitivity analysis method is proposed to analyze the impact of sensor errors on the link flow reckoning. Firstly, the key factor is defined to represent the errors of link inferring caused by the sensor errors. Then, the total effect of multiple sensor errors on the link flow inferring is proved theoretically to be the linear superposition of the effects of single sensor error. Finally, a square road network is used to test the proposed method. Two sensor location schemes of installing sensors on the only entrance links or exit links of the road network respectively are adopted, which can both support the unique link flow inferring results. The effect of sensor errors on link flow inferring is given by using the key factor method.

    参考文献
    [1] Gentili M, Mirchandani P B. Locating sensors on traffic networks: Models, challenges and research opportunities[J]. Transportation Research Part C: Emerging Technologies. 2012, 24: 227-255.
    [2] Bianco L, Confessore G, Reverberi P. A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates[J]. 2001, 35(1): 50-60.
    [3] Wang N, Gentili M, Mirchandani P. Model to Locate Sensors for Estimation of Static Origin-Destination Volumes Given Prior Flow Information[J]. Transportation Research Record Journal of the Transportation Research Board. 2015, 2283(-1): 67-73.
    [4] Fei X, Mahmassani H S. Structural analysis of near-optimal sensor locations for a stochastic large-scale network[J]. Transportation Research Part C Emerging Technologies. 2011, 19(3): 440-453.
    [5] Fei X, Mahmassani H S, Eisenman S M. Sensor Coverage and Location for Real-Time Traffic Prediction in Large-Scale Networks[J]. Transportation Research Record Journal of the Transportation Research Board. 2007, 2039(2039): 1-15.
    [6] 伍建国,王峰. 城市道路交通数据采集系统检测器优化布点研究[J]. 公路交通科技. 2004(02): 88-91.
    [7] 邵敏华,邵显智,孙立军. 基于转弯比例的检测器布设与流量推算惟一性[J]. 同济大学学报(自然科学版). 2013, 41(6): 834-839, 909.
    [8] 邵敏华,孙立军,邵显智. 基于转弯比例的网络检测器布设模型及算法[J]. 吉林大学学报(工学版). 2013(06): 1476-1481.
    [9] 邵敏华,邵显智,孙立军. 城市地面道路流量采集设备布设方案探讨[J]. 长沙交通学院学报. 2006(03): 49-53.
    [10] Castillo E, Calvi?o A, Lo H K, et al. Non-planar hole-generated networks and link flow observability based on link counters[J]. Transportation Research Part B: Methodological. 2014, 68: 239-261.
    [11] Castillo E, Calvino A, Menendez J M, et al. Deriving the Upper Bound of the Number of Sensors Required to Know All Link Flows in a Traffic Network[J]. IEEE Transactions on Intelligent Transportation Systems. 2013, 14(2): 761-771.
    [12] Castillo E, Gallego I, Menendez J M, et al. Optimal Use of Plate-Scanning Resources for Route Flow Estimation in Traffic Networks[J]. IEEE Transactions on Intelligent Transportation Systems. 2010, 11(2): 380-391.
    [13] Castillo E, Gallego I, Sanchez-Cambronero S, et al. Matrix Tools for General Observability Analysis in Traffic Networks[J]. IEEE Transactions on Intelligent Transportation Systems. 2010, 11(4): 799-813.
    [14] Castillo E, Jimenez P, Menendez J M, et al. The Observability Problem in Traffic Models: Algebraic and Topological Methods[J]. IEEE Transactions on Intelligent Transportation Systems. 2008, 9(2): 275-287.
    [15] Castillo E, Menéndez J M, Jiménez P. Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations[J]. Transportation Research Part B: Methodological. 2008, 42(5): 455-481.
    [16] Rinaldi M, Viti F. Exact and approximate route set generation for resilient partial observability in sensor location problems[J]. Transportation Research Part B: Methodological. 2017, 105: 86-119.
    [17] Viti F, Rinaldi M, Corman F, et al. Assessing partial observability in network sensor location problems[J]. Transportation Research Part B: Methodological. 2014, 70: 65-89.
    [18] Rinaldi M, Corman F, Viti F. Null-Space Metric for Analysis of Partial Network Observability in Sensor Location Problems[J]. Transportation Research Board Annual Meeting. 2013.
    [19] Yang Y, Fan Y. Data dependent input control for origin–destination demand estimation using observability analysis[J]. Transportation Research Part B: Methodological. 2015, 78: 385-403.
    [20] Xu X, Lo H K, Chen A, et al. Robust network sensor location for complete link flow observability under uncertainty[J]. Transportation Research Part B: Methodological. 2016, 88: 1-20.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邵敏华,周晨阳.检测器误差对路网流量推算影响的灵敏度分析[J].同济大学学报(自然科学版),2019,47(04):0499~0507

复制
分享
文章指标
  • 点击次数:1026
  • 下载次数: 815
  • HTML阅读次数: 861
  • 引用次数: 0
历史
  • 收稿日期:2018-05-20
  • 最后修改日期:2019-02-15
  • 录用日期:2018-12-05
  • 在线发布日期: 2019-04-30
文章二维码