Abstract:Two representative kinds of bubble structure modifying agents were selected to study the effect of different types of bubble structure modifying agent on the fluidity and compressive strength of the airentrained mortar. The mechanism of the bubble structure modifying agent on the fluidity and compressive strength of the airentrained mortar was researched by testing pore structure parameters of the hardened airentrained mortar with bubble structure modifying agent and the surface tension of the liquid. The results show that the viscosity modifying agent, cyclodextrin (βCD), can delay the airentraining process by increasing the liquidphase viscosity of the mortar, so that the bubbles (pores) in the mortar can be refined, the porosity of air void size ranging from 10 μm to 20 μm can be raised, and the fluidity and compressive strength of the mortar can be increased. The antifoaming agent, siloxane polyether copolymer (PSPEO), can replace the airentraining agent molecules on the surface of the bubbles film and reduce the local surface tension. The big bubbles are refined into small bubbles with lowdosage PSPEO, while the strength of the gasliquid interface film is reduced, bubbles cannot exist stably with highdosage PSPEO and the total porosity is lowered. Therefore, the fluidity of the mortar first increases and then decreases, and the compressive strength continuously increases.