In this paper, an autoencoder-based pollutant prediction (AEPP) model is proposed based on the auto-encoder neural network, which is composed of an encoder and a decoder. First, the encoder extracts the distribution characteristics of the time series of pollutant concentration data, namely the context vector. Secondly, the decoder uses the extracted characteristics to predict the pollutant concentration data in the next unknown time. Both the encoder and the decoder in the model can adopt several LSTM structures for longtime prediction. Experiments show that the AEPP model proposed in this paper can improve the effect of pollutant prediction.