消能摇摆钢桁架框架结构抗震性能
CSTR:
作者:
中图分类号:

TU391

基金项目:

“十三五”国家重点研发计划项目课题(编号:2016YFC0701203)


Seismic Behavior of Rocking-Truss-Frame with Dampers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究消能摇摆钢桁架框架结构的抗震性能,使用OpenSees有限元软件对框架结构、支撑框架结构、摇摆钢桁架框架结构、消能摇摆钢桁架框架结构进行模态分析、静力弹塑性分析和动力弹塑性分析,讨论了4种结构的刚度特征、动力响应及损伤分布.此外,建立4种具有不同柱脚形式和阻尼器类型的对比结构,用以研究柱脚形式和阻尼器类型对于结构抗震性能的影响.研究表明,消能摇摆钢桁架框架结构具有良好的抗震性能;位移型阻尼器能够提高结构刚度和承载力、减震性能更优越,速度型阻尼器可以降低地震作用;底层框架柱脚采用铰接,可以降低地震作用,并减小底层框架柱的塑性损伤.

    Abstract:

    For the purpose of investigating the seismic behavior of rocking truss-frame with dampers, finite element models were established by software OpenSees, including frame structure, brace frame structure, rocking-truss-frame structure and rocking-truss-frame structure with displacement dampers. Based on the result of modal analysis, pushover analysis and time-history analysis, the characters of stiffness, dynamic response and damage were discussed. In order to illustrate influence of frame column root connection and dampers, four finite element models were established, which have different types of frame column roots and dampers. According to the analysis, rocking-truss-frame system has great seismic performance. Displacement dampers can improve structures stiffness and capacity, while velocity dampers can decrease story shear force. Pin-supported column roots are helpful to decreasing dynamic response and plastic damage of first floor columns.

    参考文献
    [1]Housner G. The behavior of inverted pendulum structures during earthquakes [J]. Bulletin of the Seismological Society of America. 1963. 53 (2): 403-417
    [2]Gregory A M, Yoshihiro K, Charles R. Effect of column stiffness on braced frame seismic behavior [J]. Journal of Structural Engineering. 2004.130(3): 381-391
    [3]Eatherton M R, Ma X, Krawinkler H, et al. Quasi-Static Cyclic Behavior of Controlled Rocking Steel Frames [J]. Journal of Structural Engineering, 2014, 140(11):04014083.
    [4]Eatherton M R, Fahnestock L A, Miller D J. Computational study of self-centering buckling restrained braced frame seismic performance [J]. Earthquake Engineering Structural Dynamics, 2015, 43(13):1897-1914.
    [5]Eatherton M R, Hajjar J F. Hybrid simulation testing of a self‐centering rocking steel braced frame system [J]. Earthquake Engineering Structural Dynamics, 2015, 43(11):1725-1742.
    [6]曲哲. 摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D]. 北京:清华大学,2010: 171-179Qu Zhe. Study on seismic damage mechanism control and design of rocking wall-frame structures [D]. Beijing: Tsinghua University, 2010: 171-179
    [7]Qu Z, Wada A, Motoyui S, Sakata H, et al. Pin-supported walls for enhancing the seismic performance of building structures [J]. Earthquake Engineering Structural Dynamics. 2012. 41(14): 2075-2091
    [8]杜永峰,武大洋.一种轻型消能摇摆架近断层地震响应减震分析[J].土木工程学报,2013,46(S2):1-6.Du YF, Wu DY. Seismic mitigation of an innovative light energy dissipative rocking frame under near-field ground motions. [J]China Civil Engineering Journal. 2013,46(S2):1-6
    [9]杜永峰,武大洋.基于刚度需求设计的轻型消能摇摆架减震性态分析[J].土木工程学报,2014,47(01):24-35.Du YF, Wu DY. Performance analysis of light energy dissipative rocking frame designed on the basis of stiffness demand. [J]China Civil Engineering Journal. 2014,47(01):24-35.
    [10]X. Chen, T. Takeuchi, R. Matsui. Simplified design procedure for controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research. 135(2017): 242-252
    [11]T. Takeuchi, X. Chen, R. Matsui. Seismic performance of controlled spine frames with energy-dissipating members [J]. Journal of Constructional Steel Research. 114 (2015) 51-65
    [12]GB50011-2010. 建筑抗震设计规范. 北京:中国建筑工业出版社,2010GB50011-2010. Code for Seismic Design of Buildings. Beijing: China Architecture Building Press, 2010: 36-37
    [13]GB50017-2003. 钢结构设计规范. 北京:中国建筑工业出版社,2003GB50017-2003. Code for design of steel structures. Beijing: China Architecture Building Press, 2003
    [14]Inelastic buckling of steel struts under cyclic loading reversals. Black RG,Wenger W A,Popov E P. Earthquake Engineering Research Center,UCB/EERC-84/09 . 1980
    [15]Filippou, F. C., Popov, E. P., Bertero, V. V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints. Report EERC 83-19, Earthquake Engineering Research Center, 1983, University of California, Berkeley.
    [16]黄波, 陈泉, 李涛等. 国标Q235钢屈曲约束支撑低周疲劳试验研究[J]. 土木工程学报, 2013(6):29-34.Huang Bo, Chen Quan, Li Tao. Low-cyclic fatigue test of Q235 steel buckling-restrained braces. [J]China Civil Engineering Journal. 2013(6):29-34.
    [17]FEMA P-695. Quantification of Building Seismic Performance Factors. [S] Applied Technology Council for Federal Emergency Management Agency, Washington, D.C, 2009
    [18]Erochko J, Christopoulos C, Tremblay R, et al. Residual Drift Response of SMRFs and BRB Frames in Steel Buildings Designed according to ASCE 7-05[J]. Journal of Structural Engineering, 2011, 137(5):589-599.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张文津,李国强,孙飞飞.消能摇摆钢桁架框架结构抗震性能[J].同济大学学报(自然科学版),2019,47(09):1235~1243

复制
分享
文章指标
  • 点击次数:882
  • 下载次数: 812
  • HTML阅读次数: 1015
  • 引用次数: 0
历史
  • 收稿日期:2018-09-13
  • 最后修改日期:2019-08-03
  • 录用日期:2019-04-15
  • 在线发布日期: 2019-09-29
文章二维码