基于计算机视觉的混凝土裂缝识别
CSTR:
作者:
中图分类号:

TU375.1

基金项目:

国家自然科学及基金(课题编号:51678449);中央高校基金基本科研业务费学科交叉重点项目(项目编号:22120180121)


Computer Vision-Based Crack Detection and Measurement on Concrete Structure
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为降低对结构表面进行裂缝识别的经济和时间成本,而采用计算机视觉技术、使用消费级照相机对裂缝图片进行处理,识别裂缝区域和测量裂缝宽度,包括图像模糊、图像增强、形态学运算、图像畸变校准、连通域标记、孤立点消除、裂缝碎片拼接等.对提取出的裂缝区域,统计裂缝发展方向,计算其对应的裂缝长度及宽度.通过钢筋混凝土梁静力加载试验,对梁表面裂缝进行拍摄,在实验室条件下得知裂缝宽度误差在0.1 mm左右.

    Abstract:

    Crack detection and measurement are accomplished by manual detection with crack scales, which is time-consuming and money-consuming. The research was proposed to detect and measure the cracks on the surface of concrete structure, based on computer vision technology. The measurement device was consumer-grade camera, which was relatively inexpensive. Crack detection involves image blurring, image enhancement, morphological operation, image distortion calibration, connected-domain labelling, isolated point elimination, and crack segmentation matching. Furthermore, the research calculated the length and width, as well as records and development direction of extracted crack pixels. Moreover, in the monotonic loading test of reinforced concrete beams, after taking photos of cracks on the beams and compared with the results by traditional methods, the proposed method attained the decent precision of the computer-vision based crack detection and measurement.

    参考文献
    [1] 周颖, 张立迅, 刘彤, 龚顺明. 基于计算机视觉的结构系统识别. 土木工程学报, 2018, 51(11): 1-7.YING Z, ZHANG L X, LIU T, et al. computer vision-based structural system identification[J]. China Civil Engineering Journal, 2018, 51(11): 1-7.
    [2] YAMAGUCHI T, NAKAMURA S, SAEGUSA R, et al. Image-based crack detection for real concrete surfaces[J]. Transactions on Electrical and Electronic Engineering, 2008, 3(1): 128-135.
    [3] FUJITA Y, HAMAMOTO Y. A robust automatic crack detection method from noisy concrete surfaces[J]. Machine Vision and Applications, 2011, 22(2): 245-254.
    [4] NISHIYAMA S, MINAKATA N, KIKUCHI T, et al. Improved digital photogrammetry technique for crack monitoring[J]. Advanced Engineering Informatics, 2015, 29(4): 851-858.
    [5] CHOI S, SHAH S P. Measurement of deformations on concrete subjected to compression using image correlation[J]. Experimental Mechanics, 1997, 37(3): 307-313.
    [6] ZUIDERVELD K. Contrast limited adaptive histogram equalization[J]. Graphics gems, 1994:474-485.
    [7] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transaction on system, man and cybernetics[J]. 1979, 9(1): 62-66.
    [8] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334
    [9] ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周颖,刘彤.基于计算机视觉的混凝土裂缝识别[J].同济大学学报(自然科学版),2019,47(09):1277~1285

复制
分享
文章指标
  • 点击次数:1601
  • 下载次数: 1235
  • HTML阅读次数: 3207
  • 引用次数: 0
历史
  • 收稿日期:2018-10-18
  • 最后修改日期:2019-06-28
  • 录用日期:2019-04-15
  • 在线发布日期: 2019-09-29
文章二维码