基于改进质量功能展开的质量特性重要度确定
CSTR:
作者:
中图分类号:

C93;G431

基金项目:

国家自然科学基金(71671125);同济大学中央高校基本科研业务费专项资金


Determination of Quality Characteristics Importance Based on Improved Quality Function Deployment Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对传统质量功能展开(QFD)质量屋构建过程存在语言评价信息模糊和不确定等问题,提出一种结合犹豫二元语义变量、层次分析法和逼近理想解排序多属性决策法的改进QFD模型,用以对产品质量特性的重要度级别进行确定.模型分为评价用户需求与质量特性的关系、确定用户需求的重要度权重、确定质量特性的重要度排序3个阶段,提高了质量特性重要度排序的准确性.最后以某企业一语言类数字学习系统的质量特性重要度确定为例,进行了模型应用和有效性验证,为以用户为中心的数字学习系统设计质量提升提供参考.

    Abstract:

    Aiming at the fuzzy and uncertain information of language evaluation in traditional quality function deployment (QFD) on the construction process of quality house, an improved QFD model combining hesitant fuzzy 2-tuple linguistic variables, multiple criteria decision making methods such as AHP and TOPSIS is proposed, to determine the importance ranking of quality characteristics. The proposed model consists of three stages. Firstly, the relationship between user needs and quality characteristics is evaluated. Secondly, the relative importance weight of user needs (Cs) is determined. Lastly, the importance ranking of quality characteristics (Qs) is determined. Through the above steps, the accuracy of importance ranking of quality characteristics is improved. Finally, an example of importance ranking of quality characteristics of the digital language learning system from one enterprise was given to demonstrate the effectiveness of the proposed approach. This research may provide a reference for improving the design quality of E-learning system that user-centered.

    参考文献
    [] 熊伟.质量机能展开.北京:化学工业出版社,2005:l-267
    [2] Hauser, J. R. C. D. The house of quality. Harvard business review, 1988, 66(3): 63-73
    [3] Rodriguez R M, Martinez L, Herrera F. Hesitant Fuzzy Linguistic Term Sets for Decision Making[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1):109-119.
    [4] Liao H, Xu Z, Zeng X J. Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5):1343-1355.
    [5] Tüysüz F, ?im?ek B. A hesitant fuzzy linguistic term sets-based AHP approach for analyzing the performance evaluation factors: an application to cargo sector[J]. Complex Intelligent Systems, 2017(2):1-9.
    [6] Herrera F, Martinez L. A 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(6):746-752.
    [7] Santos L F D O M, Osiro L, Lima R H P. A model based on 2-tuple fuzzy linguistic representation and Analytic Hierarchy Process for supplier segmentation using qualitative and quantitative criteria[J]. Expert Systems with Applications, 2017, 79:53-64.
    [8] Feng X Q, Liu Q, Wei C P, et al. Hesitant Fuzzy 2-tuple Linguistic Multiple Attribute Decision Making Method[J]. Operations Research Management Science, 2018.
    [9] Liu C H, Wu H H. A fuzzy group decision-making approach in quality function deployment[J]. Quality Quantity, 2008, 42(4):527-540.
    [0] Xue Y X, You J X, Zhao X, et al. An integrated linguistic MCDM approach for robot evaluation and selection with incomplete weight information[J]. International Journal of Production Research, 2016, 54(18):1-16.
    [1]Wang Z L, You J X, Liu H C. Uncertain Quality Function Deployment Using a Hybrid Group Decision Making Model[J]. Symmetry, 2016, 8(11):119.
    [2] Wu S M, Liu H C, Wang L E. Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle[J]. International Journal of Production Research, 2017:1-14.
    [3] Song W, Ming X, Han Y. Prioritising technical attributes in QFD under vague environment: a rough-grey relational analysis approach[J]. International Journal of Production Research, 2014, 52(18):5528-5545.
    [4] Hwang C L, Yoon K. Methods for Multiple Attribute Decision Making[M]// Multiple Attribute Decision Making. Springer Berlin Heidelberg, 1981:58-191.
    [5] Li D F. TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making With Interval-Valued Intuitionistic Fuzzy Sets[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1):391-391.
    [6] Liang D, Xu Z. The New Extension of TOPSIS Method for Multiple Criteria Decision Making with Hesitant Pythagorean Fuzzy Sets[J]. Applied Soft Computing, 2017, 60.
    [7] Mousavi-Nasab S H, Sotoudeh-Anvari A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems[J]. Materials Design, 2017, 121:237-253.
    [8] 邵强, 张红源. 基于模糊AHP/TOPSIS法的项目群构建评价研究[J]. 江西科学, 2011, 29(1):122-127.
    [9] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[M]. IEEE Press, 1988.
    [20] Merigó J M, Gil-Lafuente A M. New Decision-Making Techniques and Their Application in the Selection of Financial Products[J]. Information Sciences, 2010, 180(11):2085-2094.
    [2] Xu Y, Xu A, Merigó J M, et al. Hesitant fuzzy linguistic ordered weighted distance operators for group decision making[J]. Journal of Applied Mathematics Computing, 2015, 49(1-2):285-308.
    [22] Liu H C, Ren M L, Wu J, et al. An interval 2-tuple linguistic MCDM method for robot evaluation and selection[J]. International Journal of Production Research, 2014, 52(10):2867-2880.
    [23] Wu J, Liang C Y, Huang Y Q. An argument-dependent approach to determining OWA operator weights based on the rule of maximum entropy[J]. International Journal of Intelligent Systems, 2007, 22(2):209–221.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宫华萍,尤建新,王岑岚.基于改进质量功能展开的质量特性重要度确定[J].同济大学学报(自然科学版),2019,47(09):1359~1368

复制
分享
文章指标
  • 点击次数:964
  • 下载次数: 800
  • HTML阅读次数: 1050
  • 引用次数: 0
历史
  • 收稿日期:2018-11-28
  • 最后修改日期:2019-08-02
  • 录用日期:2019-03-28
  • 在线发布日期: 2019-09-29
文章二维码