基于改进树搜索方法的库存系统优化
CSTR:
作者:
中图分类号:

O242.1;N945.15;TP181

基金项目:

中央基本科研业务费


Inventory System Optimization Based on Improved Tree Search Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种算法对库存系统的库存策略进行优化,保障库存系统服务水平达到一定水平的同时最小化库存系统成本.将库存系统优化问题抽象为一个随机优化问题,结合克里金插值和蒙特卡罗树搜索求解这一随机优化问题,提高运算效率.将算法应用于真实算例中取得了很好的效果.

    Abstract:

    Propose an algorithm to optimize the strategy for an inventory system, minimize the storage cost with constraint of satisfying service level. Abstract the inventory system optimization problem into a stochastic optimization problem, combine Kriging regression and Monte Carlo tree search to solve the stochastic optimization problem efficiently. Apply this method into a real world example and get positive feedback.

    参考文献
    [1] WASSICK J M, AGARWAL A, AKIYA N, et al. Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products[J]. Computers Chemical Engineering, 2012, 47(47): 157-169.
    [2] NEIRO S M S, PINTO J M. A general modeling framework for the operational planning of petroleum supply chains[J]. Computers Chemical Engineering, 2004, 28(6): 871-896.
    [3] 刘利民, 柴跃廷. 分布式库存系统优化控制的一种改进遗传算法[J]. 计算机集成制造系统, 2002, 8(5):399-403.LIU Limin, CHAI Yuejin. A Modified Genetic Algorothm for Optimizing Control in Distributed Inventory System[J]. Computer Integrated Manufacturing Systems, 2002, 8(5):399-403.
    [4] 黄晟. 基于集中控制策略的汽车维修备件分布式多级库存研究[D]. 上海:东华大学, 2013.HUANG Sheng. A Study on Distributed Multi-Level Inventory System of Automobile Maintenance Parts in Centralized Control Background. Shanghai: Donghua University, 2013.
    [5] CHU Y, YOU F, WASSICK J M, et al. Simulation-based optimization framework for multi-echelon inventory systems under uncertainty[J]. Computers Chemical Engineering, 2015, 73(1):1-16.
    [6] AL-RIFAI M H, ROSSETTI M D. An efficient heuristic optimization algorithm for a two-echelon (R, Q) inventory system[J]. International Journal of Production Economics, 2007, 109(1):195-213.
    [7] BILES W E, KLEIJNEN J P C, BEERS W C M V, et al. Kriging metamodeling in constrained simulation optimization: an explorative study[C]// Conference on Winter Simulation: 40 Years! the Best Is Yet To Come. IEEE Press, 2007:355-362.
    [8] WANG M Z, LI W L. On Convexity of Service-Level Measures of the Discrete (r,Q) Inventory System[C]// International Conference on Innovative Computing, Information and Control. IEEE, 2007:417-417.
    [9] CRESSIE N. The origins of kriging[J]. Mathematical Geology, 1990, 22(3):239-252.
    [10] 李晓军, 李培楠, 朱合华,等. 基于贝叶斯克里金的地下空间多源数据建模[J]. 同济大学学报(自然科学版), 2014, 42(3):406-412.LI Xiaojun, LI Peinan, ZHU Hehua, et al. Geomodeling with Integration of Multi source Data by Bayesian Kriging in Underground Space[J]. Journal of Tongji University (Natural Science), 2014, 42(3): 406-412.
    [11] ANKENMAN B, NELSON B L, STAUM J. Stochastic Kriging for Simulation Metamodeling[J]. Operations Research, 2010, 58(2):371-382.
    [12] JONES D R, SCHONLAU M, WELCH W J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
    [13] HUANG D, ALLEN T T, NOTZ W I, et al. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models[J]. Journal of Global Optimization, 2012, 54(2):431-431.
    [14] SUN L, HONG L J, HU Z. Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search[M]. INFORMS, 2014.
    [15] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
    [16] KIM S, PASUPATHY R, HENDERSON S G. A Guide to Sample Average Approximation[M]// Handbook of Simulation Optimization. Springer New York, 2015:207-243.
    [17] DONG F G, LIU H M, BING-DE L U. Agent-based Simulation Model of Single Point Inventory System[J]. Systems Engineering Procedia, 2012, 4:298-304.
    [18] RAHMANDAD H, STERMAN J. Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models[J]. Management Science, 2008, 54(5): 998-1014.
    [19] 邹林君. 基于Kriging模型的全局优化方法研究[D]. 武汉: 华中科技大学, 2011.ZOU Linjun.. A Search of Global Optimization Method based on Kriging Model [D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [20] GLASSERMAN P. Monte Carlo Methods in Financial Engineering[M]. Springer, 2004:103-168.
    [21] KOCSIS L, SZEPESVáRI C. Bandit Based Monte-Carlo Planning[J]. Lecture Notes in Computer Science, 2006, 4212:282-293.
    [22] KOCSIS L, SZEPESVáRI C, WILLEMSON J. Improved Monte-Carlo search[J]. Univ Tartu, 2006.
    [23] BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A Survey of Monte Carlo Tree Search Methods[J]. IEEE Transactions on Computational Intelligence Ai in Games, 2012, 4(1):1-43.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牟刚,孙永超,徐承龙.基于改进树搜索方法的库存系统优化[J].同济大学学报(自然科学版),2019,47(12):1831~

复制
分享
文章指标
  • 点击次数:652
  • 下载次数: 770
  • HTML阅读次数: 636
  • 引用次数: 0
历史
  • 收稿日期:2018-12-10
  • 最后修改日期:2019-10-14
  • 录用日期:2019-09-02
  • 在线发布日期: 2020-01-02
文章二维码