半有限von Neumann代数上的逼近2-局部导子
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O153.5

基金项目:

National Natural Science Foundation of China ( 11871375).


Approximately 2Local Derivations on the Semi-finite von Neumann Algebras
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在逼近局部导子和2-局部导子的基础上, 给出了von Neumann代数上逼近2-局部导子的定义. 研究了半有限von Neumann代数上的逼近2-局部导子. 设M是一个von Neumann代数,Δ: M→M 是一个逼近2-局部导子. 证明Δ具有齐次性并且满足对于任意的x∈M有Δ(x2)=Δ(x)x+xΔ(x). 若M是具有半有限迹τ的von Neumann代数, 给出了M到其自身的逼近2-局部导子Δ具有可加性的一个充分条件, 即Δ满足Δ(Mτ)?Mτ, 其中Mτ={x∈M:τ(|x|)<∞}. 从而由2-torsion free半素环R 到R自身的Jordon导子是一个导子得知, 具有半有限迹τ的von Neumann代数M到其自身的逼近2-局部导子Δ若满足Δ (Mτ) ⊆Mτ, 其中Mτ={x∈M:τ(|x|)<∞}, 则Δ是一个导子.

    Abstract:

    The definition of approximately 2-local derivation on von Neumann algebras is introduced based on the definitions of approximately local derivation and 2-local derivation. Approximately 2-local derivations on semi-finite von Neumann algebras are studied. Let M be a von Neumann algebra and Δ: M→M be an approximately 2-local derivation. It is easy to obtain that Δ is homogeneous and Δ satisfies Δ(x2) =Δ(x)x+xΔ(x) for any x∈M. Besides, if M is a von Neumann algebra with a faithful normal semi-finite trace τ, then a sufficient condition for Δ to be additive is given, that is, Δ(Mτ)⊆Mτ, where Mτ={x∈M:τ(|x|)<∞}. In all, if Δ is an approximately 2-local derivation on a semi-finite von Neumann algebra with a faithful normal semi-finite trace τ and satisfies Δ(Mτ) ⊆Mτ, where Mτ={x∈M:τ(|x|)<∞}, by the conclusion that the Jordon derivation from a 2-torsion free semi-prime ring to itself is a derivation, it follows that Δ is a derivation.

    参考文献
    相似文献
    引证文献
引用本文

赵兴鹏,方小春,杨冰.半有限von Neumann代数上的逼近2-局部导子[J].同济大学学报(自然科学版),2019,47(09):1350~1354

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-09
  • 最后修改日期:2019-07-29
  • 录用日期:2019-06-03
  • 在线发布日期: 2019-09-29
  • 出版日期:
文章二维码