半有限von Neumann代数上的逼近2-局部导子
CSTR:
作者:
中图分类号:

O153.5

基金项目:

National Natural Science Foundation of China ( 11871375).


Approximately 2Local Derivations on the Semi-finite von Neumann Algebras
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在逼近局部导子和2-局部导子的基础上, 给出了von Neumann代数上逼近2-局部导子的定义. 研究了半有限von Neumann代数上的逼近2-局部导子. 设M是一个von Neumann代数,Δ: M→M 是一个逼近2-局部导子. 证明Δ具有齐次性并且满足对于任意的x∈M有Δ(x2)=Δ(x)x+xΔ(x). 若M是具有半有限迹τ的von Neumann代数, 给出了M到其自身的逼近2-局部导子Δ具有可加性的一个充分条件, 即Δ满足Δ(Mτ)?Mτ, 其中Mτ={x∈M:τ(|x|)<∞}. 从而由2-torsion free半素环R 到R自身的Jordon导子是一个导子得知, 具有半有限迹τ的von Neumann代数M到其自身的逼近2-局部导子Δ若满足Δ (Mτ) ⊆Mτ, 其中Mτ={x∈M:τ(|x|)<∞}, 则Δ是一个导子.

    Abstract:

    The definition of approximately 2-local derivation on von Neumann algebras is introduced based on the definitions of approximately local derivation and 2-local derivation. Approximately 2-local derivations on semi-finite von Neumann algebras are studied. Let M be a von Neumann algebra and Δ: M→M be an approximately 2-local derivation. It is easy to obtain that Δ is homogeneous and Δ satisfies Δ(x2) =Δ(x)x+xΔ(x) for any x∈M. Besides, if M is a von Neumann algebra with a faithful normal semi-finite trace τ, then a sufficient condition for Δ to be additive is given, that is, Δ(Mτ)⊆Mτ, where Mτ={x∈M:τ(|x|)<∞}. In all, if Δ is an approximately 2-local derivation on a semi-finite von Neumann algebra with a faithful normal semi-finite trace τ and satisfies Δ(Mτ) ⊆Mτ, where Mτ={x∈M:τ(|x|)<∞}, by the conclusion that the Jordon derivation from a 2-torsion free semi-prime ring to itself is a derivation, it follows that Δ is a derivation.

    参考文献
    [1] KADISON R. V. Derivation of operators [J]. Annals of Mathematics, 1996:280-293.
    [2] SKAI S. Derivations of w*-algebras[J]. Annals of Mathematics. 1966:273-289.
    [3] KADISON R V. Local derivations[J]. Journal of Algebra, 1990, 30: 494-509. DOI: 10.1016/0021-8693(90)90095-6
    [4] LARSON D R, SOUROUR A R. Local derivations and local automorphisms of B(X) [J]. Proceedings of Symposia in Pure Mathematics, 1990, 51: 187-194.
    [5] CRIST R L. Local derivations on operator algebras[J]. Journal of functional analysis, 1996, 135(4): 76-92. DOI:10.1006/jfan.1996.0004.
    [6] WU J. Local derivations of reflexive algebras[J]. Proceedings of the American Mathematical Society,2001, 129(6): 1733-1737. DOI: 10.2307/2669125.
    [7] JOHNSON B E. Local derivations on C*-algebras are derivations[J]. Transactions of the American Mathematical Society, 2000, 353(1): 313-325. DOI: 10.2307/221975.
    [8] èEMRL P. Local automorphisms and derivations on B(H)[J]. Proceedings of the American Mathematical Society, 1997, 125(9): 2677-2680. DOI: 10.1090/S0002-9939-97-04073-2.
    [9] KIM S O, KIM J S. Local automorphisms and derivations on M<sub>n</sub>[J], Proceedings of the American Mathematical Society, 2004, 132(5): 1389-1392. DOI: 10.1090/S0002-9939-05-08059-7.
    [10] LIN Y F, WONG T L. A note on 2-Local maps[J]. Proceedings of the Edinburgh Mathematical Society, Series II, 2006, 49(3): 701-708. DOI: 10.1017/S0013091504001142.
    [11] AYUPOV S A, KUDAYBERGENOV K K. 2-Local derivations and automorphisms on B(H)[J]. Journal of Mathematical Analysis and Applications, 2012, 395(1): 5-18. DOI: 10.1016/j.jmaa.2012.04.064.
    [12] AYUPOV S A, ARZIKULOV F. 2-Local derivations on von Neumann algebras of type I. http://www.doc88.com/p-614824588421.html .
    [13] AYUPOV S A, KUDAYBERGENOV K K, NURJANOV B O, et al. Local and 2-Local derivations on non-commutative Arens algebras[J]. Mathematica Slovaca, 2014, 64(2): 423-432. DOI: 10.2478/s12175-014-0215-9
    [14] AYUPOV S A, ARZIKULOV F. 2-Local derivations on semi-finite von Neumann algebras[J]. Glasgow Mathematical Journal, 2013: 1-4. DOI:10.1017/s0017089512000870.
    [15] SAMEI E. Approximately Local derivations from various classes of Banach algebras[D]. A thesis/ Practicum submitted to the faculty of Graduate Studies of the university of Manitoba in partial fulfilment of the requirement of the degree of doctor of philosophy, 2005.
    [16] TAO F Z, HOU C J, DENG M C. Approximately 2-local derivations on the finite von Neumann algebras[J]. Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, 2013: 25-27. DOI: 10.1109/ICAMechS.2013.6681736.
    [17] BRESAR M. Jordon derivations on semi-prime rings[J]. Proceedings of the American Mathematical Society, 1988, 104(4): 1003-1006. DOI: 10.2307/2047580.
    [18] 徐全华, 吐尔德别克, 陈泽乾. 算子代数与非交换L<sub>p</sub>空间引论[M]. 科学出版社, 2010.XU Q H, BEKJAN T N, CHEN Z Q. Introduction to operator algebras and non-commutative L<sub>p</sub> spaces [M]. The Science Publishing Company, 2010.
    [19] TAKESAKI M. Theory of Operator Algebras I[M]. Springer-Verlag, New York, 1979.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵兴鹏,方小春,杨冰.半有限von Neumann代数上的逼近2-局部导子[J].同济大学学报(自然科学版),2019,47(09):1350~1354

复制
分享
文章指标
  • 点击次数:939
  • 下载次数: 910
  • HTML阅读次数: 912
  • 引用次数: 0
历史
  • 收稿日期:2019-01-09
  • 最后修改日期:2019-07-29
  • 录用日期:2019-06-03
  • 在线发布日期: 2019-09-29
文章二维码