An efficient willow tree algorithm is proposed to price CVA (credit valuation adjustment) with WWR(wrong way risk), which can also calibrate the default probability by credit swap spreads. Besides, some numerical experiments are presented to illustrate the accuracy and efficiency of the proposed method.
[1] BASEL COMMITTEE Basel III: A global regulatory framework for more resilient banks and banking systems[J]. Basel Committee on Banking Supervision, Basel, 2010.
[2] ZHU S, PYKHTIN M. A guide to modeling counterparty credit risk[J].GARP Risk Review July/August,16-22, 2007.
[3] GREGORY J. Counterparty credit risk: the new challenge for global financial markets [M]. John Wiley & Sons, 2010.
[4] ROSEN D, SAUNDER D. CVA the wrong way[J]. Journal of Risk Management in Financial Institutions, 2012, 5(3): 252-272.
[5] HULL J, WHITE A. CVA and wrong-way risk[J]. Financial Analysts Journal, 2012, 68(5): 58-69.
[6] PYKHTIN M, SOKOL A. If a dealer defaulted, would anybody notice? Global Derivatives 2012 presentation.
[7] LI M, MERCURIO F. Jumping with default: wrong-way-risk modeling for credit valuation adjustment[J]. Available at SSRN:https://ssrn.com/abstract=2605648. 2016.
[8] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654.
[9] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2): 125-144.
[10] BRETON M, MARZOUK O. An efficient method to price counterparty risk[M]. Groupe d''''études et de recherche en analyse des décisions, 2014.
[11] BAVIERA R, LA G, PELLICIOLI P. CVA with Wrong-Way Risk in the Presence of Early Exercise[M]. Innovations in Derivatives Markets. Springer, Cham, 2016: 103-116.
[12] COX J C, ROSS A, RUBINSTEIN M. Option pricing: A simplified approach[J]. Journal of Financial Economics, 1979, 7(3): 229-263.
[13] GRAAf C S L DE , FENG Q, KANDHAI D, et al. Efficient computation of exposure profiles for counterparty credit risk[J]. International Journal of Theoretical and Applied Finance, 2014, 17(04): 1450024.
[14] HESTON SL. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. Review of Financial Studies, 1993, 6(2): 327-343.
[15] FENG, Q, Oosterlee W. Wrong Way Risk Modeling and Computation in Credit Valuation Adjustment for European and Bermudan Options.[J]. Available at SSRN:https://ssrn.com/abstract=2852819.2016
[16] 蒋昇. 交易对手风险研究-基于Copula函数的实证分析[D]. 中国社会科学研究院,2013.JIANG Sheng. Counterparty risk research-Empirical analysis based on Copula functions[D]. Chinese Academy of Social Sciences,2013.
[17] 奚扬阳,交易对手信用风险的度量及其在权益类衍生品和利率衍生品的应用[D]. 复旦大学,2014.XI Yangyang. Measures of counterparty credit risk and their applications in equity derivatives and interest rate derivatives[D]. Fudan University,2014.
[18] XU W, HONG Z, QIN C. A new sampling strategy willow tree method with application to path-dependent option pricing[J]. Quantitative Finance, 2013, 13(6): 861.
[19] SCHOUTENS W. Lévy processes in finance[M]. Wiley, 2003.
[20] XU W, YIN Y. Pricing American options by willow tree method under jump-diffusion process[J]. Journal of Derivatives, 2014, 22(1): 46.
[21] 姚怡,李帅芳,许威. 跳扩散模型下亚式期权的柳树法研究[J]. 同济大学学报(自然科学版),doi:10.11908/j,issn,0253-374x.2018.12.000.YAO Yi, LI Shuaifang, XU Wei. Efficient willow tree method for Asian option pricing under Merton Jump-diffusion model[J]. Journal of Tongji University (Nature Science), doi:10.11908/j,issn,0253-374x.2018.12.000.
[22] LONGSTAFF FA, SCHWARTZ ES. Valuing American options by simulation: a simple least-squares approach[J]. Review of Financial Studies, 2001, 14(1): 113-147.