基于粒子群优化极限学习机的排水管结构状况评价
作者:
作者单位:

1.同济大学 上海防灾救灾研究所, 上海 200092;2.同济大学 土木工程学院, 上海 200092

作者简介:

郑茂辉(1976—),男,副研究员,理学博士,主要研究方向为城市综合防灾。 E-mail: zmh@tongji.edu.cn

通讯作者:

中图分类号:

TU992

基金项目:

国家重点研发计划(2016YFC0802400,2017YFC0803300)


Structural Condition Assessment of Urban Drainage Pipes Based on Particle Swarm Optimization-Extreme Learning Machine
Author:
Affiliation:

1.Shanghai Institute and Disaster Prevention of Relief, Tongji University, Shanghai 200092, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于极限学习机( ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO-ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。

    Abstract:

    Structural condition assessment of drainage pipes has been a major concern for asset managers in maintaining the required performance of urban drainage systems. This paper proposed a neural network model combing extreme learning machine (ELM) and particle swarm optimization (PSO) to classify the structural condition status of urban drainage pipes. Besides, in an attempt to look for better classification performance, it used the PSO algorithm to optimize the input weight matrix and the hidden layer offset of ELM. Moreover, it validated the PSO-ELM model by using the dataset supplied from the Yangshan Bonded Port Area in Shanghai. Furthermore, it compared the predictive performance of PSO-ELM with ELM on the same dataset. The result shows that the PSO-ELM can achieve a higher classification accuracy by utilizing less neuron nodes in the hidden layer, and improve the fitting capability of ELM. The method proposed has feasibility and effectiveness for structural condition assessment of urban drainage pipes.

    参考文献
    相似文献
    引证文献
引用本文

郑茂辉,刘少非,柳娅楠,李浩楠.基于粒子群优化极限学习机的排水管结构状况评价[J].同济大学学报(自然科学版),2020,48(4):513~516

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-13
  • 最后修改日期:2020-02-26
  • 录用日期:2020-02-12
  • 在线发布日期: 2020-04-24
  • 出版日期:
文章二维码