基于气动减阻和散热需求的主动格栅优化设计
CSTR:
作者:
中图分类号:

U463

基金项目:

上海市地面交通工具空气动力与热环境模拟重点实验室(18DZ2273300)


Active Grille Shutter Optimal Design Based on Aerodynamic Drag Reduction and Heat Dissipation Requirements
Author:
  • JIA Qing

    JIA Qing

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Jiaping

    CHEN Jiaping

    School of Automotive Studies, Tongji University, Shanghai 201804, China;Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Zhigang

    YANG Zhigang

    Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China;Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Shanghai 201804, China;Beijing Aeronautical Science & Technology Research Institute, Beijing, 102211, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    主动进气格栅可通过控制车辆前端进气开口面积提升燃油经济性。不同车辆行驶工况下的格栅转角和风扇转速控制是主动格栅研究中的一大难点。首先结合风洞试验与数值仿真验证了计算流体力学模拟与发动机冷却系统一维模型的精度,其次通过最优拉丁超立方抽样和神经网络拟合方法构建了主动格栅转角、冷却风扇转速、车速与阻力系数、冷却风速间的近似模型,将其输入至冷却系统模型中,根据实时的发动机冷却需求提供空气流量,并选择阻力系数最小的转角组合进行控制,最终可实现在不同环境温度下使循环工况燃油降比在0.6%~0.7%。

    Abstract:

    Active grille shutter can control vehicle front-end opening area, thereby the fuel economy will be improved. The control of grille angle and fan speed under different vehicle driving conditions is a difficulty in the research of active grille shutter. Firstly, the accuracy of both computational fluid dynamics simulation and engine cooling system one-dimensional model were verified by wind tunnel tests and numerical simulation separately. Secondly, an approximate model considering the AGS angle, cooling fan speed, vehicle speed and drag coefficient, cooling air velocity was constructed by optimal Latin hypercube sampling and neural network fitting method, and then the model was input to the cooling system model. According to the real-time engine cooling demand, the AGS angle which can both meet the cooling requirements and minimum drag coefficient was chosen out. Finally the fuel reduction ratio of 0.6%~0.7% could be achieved under different ambient temperatures.

    参考文献
    [1] Buscariolo F F, Magazoni F, Maruyama F K, et al. Aerodynamic Enablers Review for Automotive Applications[R]. Detroit: SAE, 2016.
    [2] 殷杰. 长安C201轿车主动进气格栅关键技术研究[D]. 重庆: 重庆大学, 2015.YIN Jie. Research on some key technologies of active grille system for Changan C201 car[D]. Chongqin: Chongqin University, 2015.
    [3] El-Sharkawy A E, Kamrad J C, Lounsberry T H, et al. Evaluation of impact of active grille shutter on vehicle thermal management[J]. SAE International Journal of Materials and Manufacturing, 2011, 4(1): 1244-1254.
    [4] Lan K T, Xiao L, Srinivasan K, et al. The impact of vehicle front end design on AC performance[R]. Detroit: SAE, 2013.
    [5] Xu B, Leffert M, Belanger B. Fuel economy impact of grille opening and engine cooling fan power on a mid-size sedan[R]. Detroit: SAE, 2013.
    [6] Mustafa R, Schulze M, Eilts P, et al. Improved energy management using engine compartment encapsulation and grille shutter control[J]. SAE International Journal of Fuels and Lubricants, 2012, 5(2): 803-812.
    [7] 李传峰. 某新车型发动机舱热管理的研究与改进[D]. 上海: 上海交通大学, 2013.LI Chuanfeng. Study and improvement of underhood thermal management of a new vehicle[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [8] 王文玺, 吴存学, 干能强, 等. 基于中心组合设计的主动进气格栅多开度控制模型的建立[J]. 汽车工程, 2015, 37(11): 1240-1245.WANG Wenxi, Wu Cunxue, Gan nengqiang, et al. Modeling of multi-opening control for active induction grille based on central composite design[J]. Automotive Engineering, 2015, 37(11): 1240-1245.
    [9] Bouilly J, Lafossas F, Mohammadi A, et al. Evaluation of Fuel Economy Potential of an Active Grille Shutter by the Means of Model Based Development Including Vehicle Heat Management[J]. SAE International Journal of Engines, 2015, 8(5): 2394-2401.
    [10] Cho Y C, Chang C W, Shestopalov A, et al. Optimization of Active grille shutters operation for improved fuel economy[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2017, 10(2017-01-1513): 563-572.
    [11] Shigarkanthi V, Damodaran V, Soundararaju D, et al. Application of Design of Experiments and Physics Based Approach in the Development of Aero Shutter Control Algorithm[R]. Detroit: SAE, 2011.
    [12] 王宏朝, 单希壮, 杨志刚. 环境风洞阻塞比对冷却模块空气侧流场的影响[J]. 同济大学学报(自然科学版), 2017, 45(9): 1372-1376.WANG Hongchao, SHAN Xizhuang, YANG Zhigang. Effect of climate wind tunnel blockage on air-side flowfield of cooling module[J]. Journal of Tongji University(Natural Science), 2017, 45(9): 1372-1376.
    [13] 陈佳萍, 贾青, 杨志刚. 主动格栅位置及其导流板对气动阻力和冷却性能的影响[C]. 2018汽车空气动力学分会学术年会论文集. 上海: 中国汽车工程学会汽车空气动力学分会, 2018.CHEN Jiaping, JIA Qing, YANG Zhigang. The influence of active grille shutter location and underhood deflector design on aerodynamic drag and cooling performance[C]. 2018 Academic Annual Conference of Automotive Aerodynamic Committee. Shanghai: Automotive Aerodynamic Committee of SAE China, 2018.
    [14] 赵选民. 试验设计方法[M]. 北京: 科学出版社, 2006.ZHAO Xuanmin. Experimental design methods[M]. Beijing: Science Press, 2006.
    [15] Saha J, Chen H, Rahman S. Model Based Design and Optimization of Vehicle Thermal Management System[R]. Detroit: SAE, 2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贾青,陈佳萍,杨志刚.基于气动减阻和散热需求的主动格栅优化设计[J].同济大学学报(自然科学版),2020,48(02):264~275

复制
分享
文章指标
  • 点击次数:1031
  • 下载次数: 1360
  • HTML阅读次数: 47
  • 引用次数: 0
历史
  • 收稿日期:2019-03-31
  • 最后修改日期:2020-01-12
  • 录用日期:2019-07-12
  • 在线发布日期: 2020-02-26
文章二维码