Based on the unsteady simulation results, proper orthogonal decomposition (POD) was used to analyze the unsteady wake of fastback DrivAer automotive model. The comparison between improved delayed detached-eddy simulation (IDDES) results and the experimental data verifies the effectiveness of simulation method. The POD results of wake recirculation region show that the energy contribution of the first two modes is 12.39% , 6.78% and 5.61% respectively.The spectrum analysis indicates that the first two modes correspond to the same low-frequency quasi-sequential flow structure with a dominant frequency of 0.216(30Hz). Phase analysis show that they have a temporal phase shift of 0.455π. The phase average of the vorticity reconstruction field based on the first two modes reveals that quasi-sequential flow structure is found to be dominated by the periodic motion of the shear layer on the underside of the wake. The first 273 POD modes (93% of the energy) can reconstruct the original flow field well and greatly reduce the degree of freedom.