双重障碍物对开闸式异重流运动特性的影响
CSTR:
作者:
中图分类号:

TV145.23

基金项目:

国家重点研发计划(2017YFC0405502),国家自然科学基金资助项目(11672267),舟山市科技计划项目浙江大学海洋学院专项(2018C81034)


Effects of Two Consecutive Obstacles on Gravity Currents Dynamics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    异重流现象广泛存在于自然环境和水利工程中。现实工况中,底床设置障碍物是抑制异重流侵袭的有效手段,因此研究障碍物对异重流运动特性的影响具有实际工程价值。采用开闸式异重流实验,对比不同障碍物间距及高度对异重流最大扩散高度、头部速度等方面的影响,从而得到双重障碍物最优工程布置方案;分析异重流在障碍物上下游区域的速度剖面及其越过障碍物时的涡度场;对比无障、单一障碍物、双重障碍物工况对异重流掺混系数的影响。结果表明,双重障碍物最优布置方案为第一障碍物高于第二障碍物,障碍物间距要尽可能大,但应保证异重流遇到第二障碍物之前未恢复典型头部形态;在双重障碍物上游区域,异重流速度剖面出现畸变,畸变范围大致与障碍物等高,主流速度衰减明显,在障碍物下游区域,完成形态重塑的异重流,其速度剖面均存在明显的壁面区和射流区;相对于无障和单一障碍物工况,流经双重障碍物的异重流厚度明显变小;越障前后,异重流掺混系数呈现“M”型分布,越过第二障碍物后异重流的掺混速率明显大于第一障碍物。结果可为防治异重流灾害及保证水利工程安全等领域提供参考。

    Abstract:

    The phenomenon of gravity current exists widely in natural environments and hydraulic engineering. In practical conditions, the obstacle is an effective mean to prevent the invasion of gravity current, so it is valuable and worthwhile to study the effects of obstacles on the dynamic characteristics of gravity current. In this paper, the lock-exchange experiments were carried out to compare the maximum diffusion height and head velocity of gravity current with different obstacle conditions, and the optimal obstacle layout for the engineering application can be therefore obtained. In addition, the velocity profiles in the upstream and downstream of the obstacles, the vorticity field of gravity current over the obstacles, and changes in the entrainment coefficient of gravity current along the channel were analyzed. The results show that for the optimal engineering layout scheme of consecutive obstacles is as follows: the first obstacle needs to be higher than the second obstacle, and the distance between two obstacles should be as large as possible, but the typical head shape of gravity current should not be restored before it meet the second obstacle. In the upstream of the first obstacle, the velocity profiles is disturbed and decreased, and the disturbed range is approximately equal to the height of the obstacle. In the downstream of the second obstacle, there are obvious wall region and jet region in the velocity profiles of the gravity current. Compared with the condition of no obstacle and single obstacle, the thickness of the gravity current flowing through the two obstacles decreases obviously. When the gravity current flows over obstacles, the current entrainment coefficient presents an "M" type distribution. The entrainment coefficient of gravity current over the second obstacle is greater than that in the first obstacle. The conclusion of the study can provide scientific basis for mitigating the hazards induced by gravity current and ensuring the safety of hydraulic infrastructures.

    参考文献
    [1] SIMPSON J E. Gravity Current: in the Environment and the Laboratory. 2nd ed[M]. Cambridge University Press, 1997.
    [2] 范家骅. 异重流运动的实验研究[J]. 水利学报, 1959, (5): 32-50.Fan Jiahua. Experimental study on the movement of different gravity flow[J]. Journal of Hydraulic Engineering, 1959, (5): 32-50
    [3] 林挺. 层结水体中异重流沿坡运动的试验研究[D]. 浙江大学, 2016.Lin Ting. Experimental study on the movement of heterogeneous flow along a slope in a stratified water body[D]. Zhejiang University, 2016.
    [4] KINEKE G C, WOOLFE K J, KUEHL S A, et al. Sediment export from the Sepik River, Papua New Guinea: evidence for a divergent sediment plume[J]. Continental Shelf Research, 2000, 20(16): 2239–2266.
    [5] CHOWDHURY M R, TESTIK F Y. Viscous propagation of two-dimensional non-Newtonian gravity currents[J]. Fluid Dynamics Research, 2012, 44(4).
    [6] KESHTKAR S, KORDI E, GHODSIAN M, et al. Experimental study of the obstacle effect on turbidity current velocity controlling in bed slope break condition[J]. Journal of Hydrology, 2016, 46(1), 1-19.
    [7] ROTTMAN J W, SIMPSON J E, HUNT J, et al. Unsteady gravity current flows over obstacles Some observations and analysis related to the phase II trials[J]. Journal of ? Hazardous Materials, 1985, 11: 325-340.
    [8] 贺治国,林挺,赵亮,等. 异重流在层结与非层结水体中沿斜坡运动的实验研究[J]. 中国科学:技术科学, 2016, ? 46(6): 570-578.HE Zhiguo, LIN Ting, ZHAO Liang, et al. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments [J]. Sci Sin Tech, 2016, 46: 570-578.
    [9] WOODS A W, BURSIK M I, KURBATOV A V. The interaction of ash flows with ridges[J]. Bulletin of Volcanology, 1998, 60(1):38-51.
    [10] GREENSPAN H P, YOUNG R E. Flow over a containment dyke[J]. Journal of Fluid Mechanics Digital Archive, 1978, 87(01):14.
    [11] ASGHARI S A, MAHMOOD K S, GHOMESHI M. An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents[J]. Journal of Environmental and Civil Engineering, 2016, 1-13.
    [12] OEHY C D, SCHLEISS A J. Control of Turbidity Currents in Reservoirs by Solid and Permeable Obstacles[J]. Journal of Hydraulic Engineering, 2007, 133(6):637-648.
    [13] KUBO Y. Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents[J]. Sedimentary Geology, 2004, 164(3-4):311-326.
    [14] Yaghoubi S, Afshin H, Firoozabadi B, et al. Experimental Investigation of the Effect of Inlet Concentration on the Behavior of Turbidity Currents in the Presence of Two Consecutive Obstacles[J]. American Society of Civil Engineers, 2016, DOI: 10/1061/(ASCE)WW.1943-5460.
    [15] HUPPERT H E, SIMPSON J E. The slumping of gravity currents[J]. Journal of Fluid Mechanics, 2006, 99(4): 785-799.
    [16] KINEKE G C, WOOLFE K J, KUEHL S A, et al. Sediment export from the Sepik River, Papua New Guinea: evidence for a divergent sediment plume[J]. Continental Shelf Research, 2000, 20(16): 2239–2266.
    [17] THIELICKE W, STAMHUIS E J. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB[J]. Journal of Open Research Software, 2014, 2(1).
    [18]????????????? NOGUEIRA H S, ADDUCE C, ALVES E, et al. Analysis of lock-exchange gravity currents over smooth and rough beds[J]. Journal of Hydraulic Research, 2013, 51(4).
    [19]????????????? VARJAVAND P, GHOMESHI M, DALIR A H, et al. Experimental observation of saline underflows and turbidity currents, flowing over rough beds[J]. Canadian Journal of Civil Engineering, 2015, 42(11): 834-44.
    [20] 彭明. 开闸式异重流的流动结构和颗粒输运的实验研究[D]. 北京大学, 2013.PENG Ming. Experimental study on flow structure and particle dispersion of lock-exchange gravity currents[D]. Peking University, 2013.
    [21] BRITTER R E. The motion of the front of a gravity current traveling down an incline[J]. Journal of Fluid Mechanics, 1980, 99(3): 531-543
    [22] JACOBSON M R, TESTIK F Y. Turbulent entrainment into fluid mud gravity currents[J]. Environmental Fluid Mechanics, 2014, 14(2): 541-563.
    [23] WILSON R I, FRIEDRICH H, STEVENS C. Turbulent entrainment in sediment-laden flows interacting with an obstacle[J]. Physics of Fluids, 2017, 29(3): 036603.
    [24] OTTOLENGHI L, ADDUCE C, INGHILESI R, et al. Entrainment and mixing in unsteady gravity currents[J]. Journal of Hydraulic Research, 2016, 54(5): 1-17.
    [25]????????????? TURNER J S. Buoyancy Effects in Fluids[M]. Cambridge University Press, 1973, U.K.
    [26] ALTINAKAR S, GRAF W H, HOPFINGER E J. Weakly depositing turbidity current on a small slope[J]. Journal of Hydraulic Research, 1996, 28(1):55-80.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林颖典,韩东睿,袁野平,贺治国.双重障碍物对开闸式异重流运动特性的影响[J].同济大学学报(自然科学版),2020,48(02):317~

复制
分享
文章指标
  • 点击次数:687
  • 下载次数: 779
  • HTML阅读次数: 42
  • 引用次数: 0
历史
  • 收稿日期:2019-05-10
  • 最后修改日期:2020-01-13
  • 录用日期:2019-12-02
  • 在线发布日期: 2020-02-26
文章二维码