建筑活荷载的大数据调查方法研究
CSTR:
作者:
中图分类号:

TU312

基金项目:

广东大数据科学中心联合基金重点支持项目(U1711264)


Research on Big Data Survey Method of Building Live Load
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    可靠的荷载取值是建筑结构可靠性设计的基础。传统上采用入户抽样称重的方式调查建筑物活荷载,存在效率低、成本高、周期长、样本少、时效性差以及大件物品称重困难等问题。基于大数据研究思维,提出了室内持久性活荷载的新型研究方式,通过图片、音频、视频、识别码等多源异构数据,结合互联网资源,综合目标检测、图像、语音或文本识别等手段来获得建筑物室内物品的重量。在详细介绍实施方法的流程后,进一步通过案例进行研究,结果表明利用大数据技术可以实现高效、便捷的建筑物活荷载调查,构建全新的荷载研究范式。

    Abstract:

    Reliable live load value is the prerequisite for reliability design of civil engineering buildings. Traditionally, building live loads are investigated by means of indoor objects sampling and weighing. This method has many problems such as low efficiency, high labor cost, long duration, limited samples, poor timelines in reflecting indoor items change and difficulty in weighing large items. Inspired by the big data concept, this paper proposes a new research method for investigating indoor sustained live loads. Through the multi-source heterogeneous data such as photos, videos, identification codes, and voices, combined with internet resources, the weight of objects in the building is obtained by means of object detection, image retrieval, voice or text recognition. After the detailed introduction of the implementation method, further case studies show that the use of big data technology can achieve efficient and convenient building live load survey, and build a new load research paradigm

    参考文献
    [1] 曹振熙, 曹普. 建筑工程结构荷载学[M]. 北京: 中国水利水电出版社, 2006: 1-4CAO Zhenxi, CAO Pu. Load of civil engineering structure[M]. Beijing: China Water Power Press, 2006: 1-4.
    [2] 李杰. 论第三代结构设计理论[J]. 同济大学学报(自然科学版), 2017, 45(5): 617-632.LI Jie. On the third generation of structural design theory[J]. Journal of Tongji University(Natural Science), 2017, 45(5): 617-632.
    [3] REICHMAN O J, JONES M B, SCHIDHAUER M P. Challenges and opportunities of open data in ecology [J], Science, 2011, 331(6018):703-705.
    [4] Office of the Deputy Assistant Secretary of the Army (Research Technology). Emerging science and technology trends:2016-2045, a synthesis of leading forecasts[R]. 2016.
    [5] JIN Xinyang, ZHAO Jida. Development of the design code for building structures in China[J]. Structural Engineering International, 2012, 22(2): 195-201.
    [6] 荷载暂行规定: 结规 1-58[S]. 北京: 建筑工程出版社, 1958.Interim provisions of load: 1-58[S]. Beijing: China Architecture Building Press, 1958.
    [7] 建筑工程部图书编辑部. 建筑结构设计荷载[M]. 北京:中国工业出版社, 1970: 48-51.Department of Architectural Engineering, Book Editing Department. Design loads of building structures[M]. Beijing: China Architecture Building Press, 1970: 48-51.
    [8] 工业与民用建筑结构荷载规范: TJ 9-74[S]. 北京: 中国建筑工业出版社, 1974.Lode code for industrial and civil building structures: TJ9-74[S]. Beijing: China Architecture Building Press, 1974.
    [9] 建筑结构荷载规范: GBJ 9-87[S]. 北京: 中国计划出版社, 1987.Load code for the design of building structures: GBJ 9-87[S]. Beijing: China Planning Press, 1987.
    [10] 建筑结构荷载规范: GB 50009-2001[S]. 北京: 中国建筑工业出版社, 2001.Load code for the design of building structures: GB50009-2001[S]. Beijing: China Architecture Building Press, 2001.
    [11] 建筑结构荷载规范: GB 50009-2012[S]. 北京: 中国建筑工业出版社, 2012.Load code for the design of building structures: GB50009-2012[S]. Beijing: China Architecture Building Press, 2012.
    [12] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
    [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
    [14] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
    [15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
    [16] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
    [17] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.
    [18] ABADI M, BARHAM P, CHEN J, et al. Tensorflow: A system for large-scale machine learning[C]//12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 2016: 265-283.
    [19] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//European conference on computer vision. Springer, Cham, 2014: 740-755.
    [20] KINGMA D, BA J. Adam: a method for stochastic optimization [J]. arXiv preprint arXiv:1412.6980, 2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈隽,李洋,臧笛.建筑活荷载的大数据调查方法研究[J].同济大学学报(自然科学版),2020,48(02):208~214

复制
分享
文章指标
  • 点击次数:961
  • 下载次数: 1051
  • HTML阅读次数: 72
  • 引用次数: 0
历史
  • 收稿日期:2019-05-13
  • 最后修改日期:2019-12-17
  • 录用日期:2019-11-29
  • 在线发布日期: 2020-02-26
文章二维码