基于三维弹性体滚动接触理论的轮轨非平面 接触算法
CSTR:
作者:
作者简介:

许玉德(1965—),男,教授,博士生导师,工学博士,主要研究方向为轨道管理、轨道养修技术。

中图分类号:

U211.5

基金项目:

中央高校基本科研业务费专项资金(22120180239);高速铁路轨道技术国家重点实验室开放基金(2018YJ184)


Wheel-rail Non-flat Contact Algorithm Based on Three-dimensional Elastic Bodies Rolling Contact Theory
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于Kalker的三维弹性体滚动接触理论,结合轮轨非平面接触几何关系,提出了最小余能方程中影响系数的修正公式。考虑轮轨非平面接触时法向与切向存在的相互作用,对最小余能方程进行离散化。以总余能最小为目标,将离散方程的求解转化为非线性规划问题,并提出了求解算法。利用有限元方法验证了所提算法的准确性。最后,研究了钢轨在不同磨耗状态下的轮轨接触特性。结果表明,在不同磨耗、相同横移量条件下,随着磨耗的增加,轮轨的轨距角接触由两点接触过渡至共形接触,最大接触应力减小,接触斑变得狭长,接触面积增大。

    Abstract:

    Based on the Kalker’s three-dimensional elastic bodies rolling contact theory and combined with the wheel-rail non-flat contact geometric relationship, the modified equation of the influence coefficient implemented in the minimum complementary energy equation was presented. Considering the interaction between the normal and the shear effects of wheel-rail non-flat contact, the minimum complementary energy equation was discretized. The solution of the discretized equation was transformed into a nonlinear programming problem with the target of the minimum of the total complementary energy, and the algorithm for solving the problem was proposed. The accuracy of the algorithm was validated with a finite element simulation. Lastly, the wheel-rail non-flat contact characteristics under different worn rail conditions were studied and the results show that, under the conditions of different wears and same lateral displacements, with the wear increasing, the wheel-rail contact occurred in the gauge corner changes from a two-point contact to a conformal contact, the corresponding maximum stress decreases, the contact patch becomes narrow and long, and the contact area increases.

    参考文献
    [1] BURGELMAN N, LI Z, DOLLEVOET R. A new rolling contact method applied to conformal contact and the train-turnout interaction[J]. Wear, 2014, 321:94.
    [2] MEYMAND S, KEYLIN A, AHMADIAN M. A survey of wheel-rail contact models for rail vehicles[J]. Vehicle System Dynamics, 2016, 54:386.
    [3] HERTZ H. über die berührung fester elastischer k?rper[J]. Reine und Angewandte Mathematik, 1882, 92:156.
    [4] KALKER J. Three-dimensional elastic bodies in rolling contact[M]. Dordrecht: Kluwer Academic Publishers, 1990.
    [5] AYASSE J, CHOLLET H. Determination of the wheel rail contact patch in semi-Hertzian conditions[J]. Vehicle System Dynamics, 2005, 43:161.
    [6] KALKER J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11:1.
    [7] KALKER J. A simplified theory for non-Hertzian contact[J]. Vehicle System Dynamics, 1983, 12:43.
    [8] LI Z. Wheel-rail rolling contact and its application to wear simulation[D]. Delft: Delft University of Technology, 2002.
    [9] VOLLEBREGT E, SEGAL G. Solving conformal wheel-rail rolling contact problems[J]. Vehicle System Dynamics, 2014, 52(S1):455.
    [10] ZHU B, ZENG J, ZHANG D, et al. A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction[J]. Wear, 2019, 432:1.
    [11] MA Y, MARKINE V, MASHAL A, et al. Modelling verification and influence of operational patterns on tribological behaviour of wheel-rail interaction[J]. Tribology International, 2017, 114:264.
    [12] ZHOU Y, HAN Y, MU D, et al. Prediction of the coexistence of rail head check initiation and wear growth[J]. International Journal of Fatigue, 2018, 112: 289.
    [13] BUTINI E, MARINI L, MEACCI M, et al. An innovative model for the prediction of wheel-rail wear and rolling contact fatigue[J]. Wear, 2019, 436:1.
    [14] FIRLIK B, STASKIEWICZ T, JASKOWSKI W, et al. Optimization of a tram wheel profile using a biologically inspired algorithm[J]. Wear, 2019, 430:12.
    [15] BLANCO L J, SANTAMARIA J, VADILLO E, et al. On the influence of conformity on wheel-rail rolling contact mechanics[J]. Tribology International, 2016, 103:647.
    [16] 许玉德, 严道斌, 孙小辉, 等. 重载铁路钢轨磨耗状态下的轮轨法向接触特性[J]. 同济大学学报:自然科学版, 2019, 47(5):663.
    [17] 李向利, 刘红卫, 黄亚魁. 求解特定线性互补问题的牛顿KKT内点法[J]. 应用数学学报, 2010, 33(5):889.
    [18] 冯冬冬. 一类精细修正牛顿法和拟牛顿法研究[D].长沙: 中南大学, 2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许玉德,严道斌,孙小辉.基于三维弹性体滚动接触理论的轮轨非平面 接触算法[J].同济大学学报(自然科学版),2020,48(03):383~391

复制
分享
文章指标
  • 点击次数:560
  • 下载次数: 1301
  • HTML阅读次数: 218
  • 引用次数: 0
历史
  • 收稿日期:2019-08-01
  • 最后修改日期:2019-11-14
  • 录用日期:2019-12-06
  • 在线发布日期: 2020-04-19
文章二维码