圆锥(台)形人造山体地基竖向附加应力及沉降
CSTR:
作者:
作者单位:

同济大学 土木工程学院,上海 200092

作者简介:

高彦斌(1973—),男,副教授,博士生导师,工学博士,主要研究方向为软黏土土质学、土力学及软土工程。 E-mail: yanbin_gao@tongji.edu.cn

中图分类号:

TU431

基金项目:

国家自然科学基金(41972273)


Vertical Additional Stress and Settlement of the Conical and Truncated Cone Shaped Artificial Mountain Foundation
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用布辛涅斯克解,给出了圆锥形和圆台形荷载作用下地基中心竖向附加应力计算公式,发现竖向附加应力随深度衰减要远大于其他类型荷载下的结果;采用弹性有限元法,给出了圆锥形荷载作用下地基中任意位置的竖向附加应力系数图,解决了圆锥和圆台荷载下任意位置竖向附加应力以及地表沉降的计算问题。工程案例验证了采用该方法给出轴对称附加应力解的必要性;并通过一个算例分析了两个圆锥形山体作用下地基的竖向附加应力和地表沉降的相互影响规律。

    Abstract:

    By using the Boussinesq solution, the formulas for calculating the vertical additional stress of the foundation center under the action of conical and truncated cone shaped load were given. The attenuation of vertical additional stress with depth was found much greater than that under other types of loads. By using the elastic finite element method, the vertical additional stress coefficient diagram of any position of foundation under the action of conical load was given, and the calculation problems of vertical additional stress and ground settlement at any position under the conical and truncated cone shaped load were solved. A case study was carried out to testify the necessity of using the proposed method to give the axisymmetric additional stress solution. Furthermore, a calculation example was given to analyze the mutual influence rule between the vertical additional stress of the foundation and the surface settlement under the action of two conical mountains.

    参考文献
    [1] JURGENSON L. The application of theories of elasticity and plasticity to foundation problems [J]. Soil Mechanics, 1934(1):1925.
    [2] GRAY H. Stress distribution in elastic solids[C]//Proc 1st Int Conf Soil Mechs.Cambridge:[s.n.],1936(2):157-168.
    [3] OSTERBERG J O. Influence values for vertical stresses in a semi-infinite mass due to an embankment loading [C] // Proc.4th ISMFE. London:[s.n.],1957,1(1):393-394.
    [4] GIROUND J P. Settlement of a linearly loaded rectangular area [J]. Soil Mechanics,1968,94(4):18.
    [5] 吴世明,梁剑,胡亚元,等.横观各向同性半无限空间表面典型荷载作用下的地基附加应力系数[J].应用数学和力学,2000,21(8):809.
    [6] 王甲春,陈峰.地基中附加应力分布规律分析[J].湖南科技大学学报(自然科学版),2014,29(4):65.
    [7] 景世红.附加应力系数和平均附加应力系数的推导及解析[J].城市建筑,2014(14):182.
    [8] 贾煜,杨龙才,王炳龙.条形抛物线荷载下桩网结构路基的附加应力计算[J].岩石力学与工程学报,2013,32(S2):4098.
    [9] 呙润华,凌建明.飞机荷载作用下场道地基附加应力特征[J].同济大学学报(自然科学版),2001,29(3):288.
    [10] 杨斐,杨宇亮,孙立军.飞机起降荷载作用下的场道地基沉降[J].同济大学学报(自然科学版),2008,36(6):744.
    [11] 周正峰,凌建明,梁斌,等.机坪输油管道荷载附加应力分析[J].同济大学学报(自然科学版),2013,41(8):1219.
    [12] 张宇,余飞,陈善雄,等.南水北调高填方渠道附加应力计算方法研究[J].岩石力学与工程学报,2015,34(S1):3169.
    [13] HARR M E, LOVELL C W. Vertical stress under certain axisymm-etrical loadings [J]. Highway Research Record, 1963(39):68.
    [14] 袁聚云, 钱建固, 张宏鸣,等. 土质学与土力学[M]. 4版.北京:人民交通出版社,2009.
    [15] GIBSON R E. Some results concerning displacements and stresses in a non-homogeneous elastic half- space [J]. Geotechnique, 1967,17:58.
    [16] POULOS H G.岩土力学弹性解[M].孙幼兰,译.徐州:中国矿业大学出版社,1990.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高彦斌,姚天骄.圆锥(台)形人造山体地基竖向附加应力及沉降[J].同济大学学报(自然科学版),2020,48(7):945~952

复制
分享
文章指标
  • 点击次数:569
  • 下载次数: 959
  • HTML阅读次数: 444
  • 引用次数: 0
历史
  • 收稿日期:2019-09-04
  • 在线发布日期: 2020-08-04
文章二维码