高精密航天器多余物检测算法研究
CSTR:
作者:
作者单位:

1.同济大学 机械与能源工程学院,上海201804;2.上海无线电设备研究所,上海200090

作者简介:

刘海江(1967—),男,教授,博士生导师,工学博士,主要研究方向为复杂装备数字化设计、智能制造与精密 检测技术。E-mail: defensec@tongji.edu.cn

中图分类号:

V416.6


Detection Algorithm of Remainder in High-Precision Spacecraft
Author:
Affiliation:

1.School of Mechanical Engineering, Tongji University, Shanghai 201804, China;2.Shanghai Institute of Radio Equipment, Shanghai 200090, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高精密航天器中内部活动多余物的存在是降低航天器可靠性的重要因素。针对现有多余物检测算法在较强环境噪声下难以有效检测出多余物信号脉冲并排除可动组件干扰的问题,提出了一种基于谱减法去噪、两级脉冲提取和脉冲发生序列周期性分析的高精密航天器多余物检测算法。利用谱减法实现对环境噪声的有效抑制;采用两级脉冲提取法对多余物信号与可动组件信号进行脉冲提取;通过对脉冲发生序列进行周期性分析,以周期信号相似度作为区分多余物信号和可动组件信号的判别依据,从而实现对多余物有无的检测。试验验证表明,该算法能有效检测航天器内多余物与可动组件的存在情况,识别准确率可达96%。

    Abstract:

    The presence of internal moving remainder in high-precision spacecraft is an important factor to reduce the reliability of spacecraft. Aiming at the problem that the existing remainder detection algorithm was difficult to effectively detect the remainder pulse and eliminate the interference of the movable component under relatively strong environmental noise, an algorithm for detecting the remainder of high-precision spacecraft based on spectrum subtraction denoising, two-stage pulse extraction and periodic analysis of pulse generation sequences was proposed. The spectrum subtraction method was used to achieve effective suppression of environmental noise. The two-stage pulse extraction method was used to extract the pulse of the remainder signal and the movable component signal. By analyzing the periodicity of the pulse generation sequence, the periodic signal similarity was used as the discrimination basis for distinguishing the remainder signal and the movable component signal; thereby the detection of the remainder was realized. The experimental verification shows that the proposed algorithm can effectively detect the existence of remainder and movable components in the spacecraft, and the recognition accuracy can reach 96%.

    参考文献
    [1] United States Department of Defense. Department of defense test method standard microcircuit: MIL-STD-883G[S]. Philadelphia: Navy Publications and Printing Press, 2006.
    [2] 李超.多通道多余物微弱信号检测方法研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
    [3] 乌英嘎. 星载电子设备活动多余物识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    [4] 邢通, 陈金豹, 翟国富, 等. 星载电子设备多余物自动检测系统[J].电子测量与仪器学报, 2013, 27(4):359.
    [5] ZHAI G F , CHEN J B, WANG S J, et al. Material identification of loose particles in sealed electronic devices using PCA and SVM[J]. Neurocomputing, 2015, 148:222.
    [6] 郜雷阵, 燕会臻, 王国涛, 等. 基于PIND多余物检测设备的脉冲提取方法设计[J].电器与能效管理技术, 2019(10): 21.
    [7] 陈金豹. 密封电子设备多余物检测的信号特征识别与置信度评价[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [8] 戚乐.航天发动机多余物检测系统的研究[D]. 哈尔滨: 哈尔滨工业大学,2014.
    [9] 王强.密封电子元器件多余物检测信号调理优化与组件信号识别[D]. 哈尔滨: 哈尔滨工业大学,2018.
    [10] 宋知用.MATLAB在语音信号分析与合成中的应用[M]. 北京: 北京航空航天大学出版社, 2013.
    [11] 邸继征,银俊成.小波分析应用解析[M]. 北京: 科学出版社, 2016.
    [12] 李世玲, 李治, 李合生. 基于小波包能量特征的滚动轴承故障监测方法[J]. 系统仿真学报, 2003, 15(1):76.
    [13] 马锐.小波分析在岩样破裂声发射检测中的应用[D]. 西安:西安科技大学, 2013.
    [14] 周荫清.信息理论基础[M].北京:北京航天航空大学出版社,2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘海江,刘劲松,魏臣隽.高精密航天器多余物检测算法研究[J].同济大学学报(自然科学版),2020,48(5):716~724

复制
分享
文章指标
  • 点击次数:601
  • 下载次数: 1038
  • HTML阅读次数: 320
  • 引用次数: 0
历史
  • 收稿日期:2019-09-16
  • 在线发布日期: 2020-06-05
文章二维码