纤维混凝土组合桥面板裂缝宽度计算方法
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海200092;2.江西省高速集团有限公司,江西南昌330025

作者简介:

戴昌源(1990—),男,工学博士,主要研究方向为组合桥面板、混合桥面板。 E-mail: dai_cy@foxmail.com

通讯作者:

徐晨(1982—),男,副教授,工学博士,主要研究方向为钢与组合结构桥梁。 E-mail: xuchenprc@hotmail.com

中图分类号:

U442.5

基金项目:

国家自然科学基金(51978501)


Crack Width Calculation Method of Fiber Reinforced Concrete Composite Bridge Deck
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai200092, China;2.Jiangxi Expressway, Nanchang330025, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了考虑纤维混凝土中纤维对裂缝的桥接作用并计入其对抑制组合桥面板混凝土裂缝产生与发展的有利作用,提出了一种纤维混凝土开裂后残余应力的计算方法和考虑残余应力的裂缝宽度计算方法。综合考虑影响混凝土开裂后残余应力fR,1的因素有:纤维屈服应力σy、纤维体积率Vf、混凝土抗压强度fcm、纤维长度lf、纤维特征参数a,推导了上述因素对影响纤维混凝土开裂后残余应力的相关性。基于35组纤维混凝土梁三点加载缺口梁试验数据进行回归分析,并得到了具有95%保证率的fR,1计算公式。在欧洲规范混凝土裂缝宽度计算方法的基础上,考虑纤维混凝土开裂后残余应力的贡献,提出了一种组合桥面板负弯矩区裂缝宽度的计算方法。通过一个纤维混凝土组合桥面板负弯矩加载试验对该计算方法进行验证,结果表明,计算得到的开裂后钢筋应力及裂缝宽度与试验结果吻合较好。

    Abstract:

    To consider the crack bridging effect of steel fibers in fiber reinforced concrete (FRC) and its beneficial effect of restricting crack initiation and development in composite bridge deck, a calculation method of residual stress and cracking width was proposed. The main parameters influencing the residual stress fR,1 were yielding stress of fiber σy, fiber volume fraction Vf, compression strength of concrete fcm, fiber length lf, fiber aspect ratio a. The correlation between the afore mentioned parameters and the residual stress was derived. Based on the linear regression analysis from test results of 35 three-point bending tests on notched beam recorded in the literature, an equation to calculate fR,1 with 95% confidence level was proposed. Including the contribution of residual stress in the calculation method for the composite structure under negative moment suggested by Eurocode 4, a crack width calculation method for FRC composite bridge deck was proposed. A FRC composite bridge deck specimen subjected to negative moment loading was used to validate the calculation method. The results show that the calculated rebar stress and crack width fits well with the tested value.

    参考文献
    [1] 邵旭东, 曹君辉, 易笃韬, 等. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2): 40
    [2] 杨勇, 祝刚, 周丕健, 等. 钢板-混凝土组合桥面板受力性能与设计方法研究[J]. 土木工程学报, 2009, 42(12): 135
    [3] NIE J G, MA X W, WEN L Y. Experimental and numerical investigation of steel-concrete composite waffle slab behavior[J]. Journal of Bridge Engineering, 2015, 141 (11): 04015024
    [4] 苏庆田, 韩旭, 姜旭, 等. U形肋正交异性组合桥面板力学性能[J]. 哈尔滨工业大学学报, 2016, 48(9): 14
    [5] 苏庆田, 贺欣怡, 曾明根, 等. T形肋正交异性组合桥面板力学性能[J]. 同济大学学报(自然科学版), 2016, 44(3): 341
    [6] RASMUS W, JOHN F O, HENRIK S, et al. Analysis of an orthotropic deck stiffened with a cement-based overlay[J]. Journal of Bridge Engineering, 2007, 12 (3): 350
    [7] 白敏, 牛荻涛, 姜磊, 等. 钢纤维改善混凝土力学性能和微观结构的研究[J]. 硅酸盐通报, 2013, 32(10): 2084
    [8] 高丹盈, 张明, 赵军. 疲劳荷载下钢纤维高强混凝土梁裂缝宽度的计算方法[J]. 土木工程学报, 2013, 46(3): 40
    [9] 何化南, 黄承逵. 钢纤维自应力混凝土受拉应力-应变全曲线试验研究[J]. 大连理工大学学报, 2004, 44(5): 710
    [10] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7): 35
    [11] 杨萌, 黄承逵. 钢纤维高强混凝土轴拉性能试验研究[J]. 土木工程学报, 2006, 39(3): 55
    [12] 中国工程建设标准化协会. 2004 纤维混凝土结构技术规程:CECS 38 [S]. 北京: 中国计划出版社, 2004
    [13] International Federation for Structural Concrete (FIB). FIB model code for concrete structures 2010 [S]. Berlin: Wilhelm Ernst & Sohn, 2010
    [14] SARMIENTO E V, GEIKER M R, KANSTAD T. Influence of fibre configuration on the mechanical behaviour of standard test specimens and full-scale beams made of flowable FRC[J]. Construction and Building Materials, 2016, 111: 794
    [15] CEN European Committee for Standardization. EN 1994-2:2004 Eurocode 4: design of composite steel and concrete structures [S]. Brussels: CEN, 2004
    [16] STROEVEN P. Stereological principles of spatial modeling applied to steel fiber-reinforced concrete in tension[J]. ACI Materials Journal, 2009, 106 (3): 213
    [17] BARNETT S J, LATASTE J F, PARRY T, et al. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength[J]. Materials and Structures, 2010, 43 (7): 1009
    [18] QSYMAH A, SHARMA R, YANG Z, et al. Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete[J]. Construction and Building Materials, 2017, 130: 230
    [19] SOETENS T, MATTHYS S. Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete[J]. Construction and Building Materials, 2014, 73: 458
    [20] ANTOINE E N, GEORGE G N, JAMIL M A. Fiber pullout and bond slip. II: experimental validation[J]. Journal of Structural Engineering, 1991, 117 (9): 2791
    [21] ANTOINE E N, GEORGE G N, JAMIL M A. Fiber pullout and bond slip. I: analytical study[J]. Journal of Structural Engineering―ASCE, 1991, 117 (9): 2769
    [22] LI V C, STANG H, KRENCHEL H. Micromechanics of crack bridging in fiber-reinforced concrete[J]. Materials and Structures, 1993, 26 (162): 486
    [23] LARANJEIRA F, MOLINS C, AGUADO A. Predicting the pullout response of inclined hooked steel fibers[J]. Cement and Concrete Research, 2010, 40 (10): 1471
    [24] SOETENS T, GYSEL A V, MATTHYS S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres[J]. Construction and Building Materials, 2013, 43: 253
    [25] FENG J, SUN W W, WANG X M, et al. Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete[J]. Construction and Building Materials, 2014, 69: 403
    [26] ABDALLAH S, FAN M, REES D W A. Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres[J]. Materials & Design, 2016, 112: 539
    [27] FEHLING E, SCHMIDT M, WALRAVEN J, et al. Ultra-high performance concrete UHPC[M]. Berlin: Ernst & Sohn, 2014
    [28] Committee ACI . Report on fiber reinforced concrete[R]. New York: American Concrete Institute, 2009
    [29] CEN European Committee for Standardization. EN 1992-1-1 Eurocode 2: design of concrete structures [S]. Brussels: CEN, 2003
    [30] 张彦玲, 樊健生, 李运生. 连续组合梁桥裂缝发展规律分析及裂缝宽度计算[J]. 工程力学, 2011, 28(7): 84
    [31] 张彦玲. 钢—混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究[D]. 北京: 北京交通大学,2009
    [32] AMIN A, FOSTER S J, MUTTONI A. Derivation of the σ‐w relationship for SFRC from prism bending tests[J]. Structural Concrete, 2015, 16 (1): 93
    [33] CARMONA S, MOLINS C, AGUADO A. Correlation between bending test and Barcelona tests to determine FRC properties[J]. Construction and Building Materials, 2018, 181: 673
    [34] De MONTAIGNAC R, MASSICOTTE B, CHARRON J, et al. Design of SFRC structural elements: post-cracking tensile strength measurement[J]. Materials and Structures, 2012, 45 (4): 609
    [35] GIACCIO G, TOBES J M, ZERBINO R. Use of small beams to obtain design parameters of fibre reinforced concrete[J]. Cement and Concrete Composites, 2008, 30 (4): 297
    [36] SARMIENTO E V, GEIKER M R, KANSTAD T. Influence of fibre configuration on the mechanical behaviour of standard test specimens and full-scale beams made of flowable FRC[J]. Construction and Building Materials, 2016, 111: 794
    [37] TIBERTI G, MINELLI F, PLIZZARI G A, et al. Influence of concrete strength on crack development in SFRC members[J]. Cement and Concrete Composites, 2014, 45: 176
    [38] BENCARDINO F, RIZZUTI L, SPADEA G, et al. Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete[J]. Composites Part B: Engineering, 2013, 46: 31
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴昌源,苏庆田,冯小毛,周小勇,徐晨.纤维混凝土组合桥面板裂缝宽度计算方法[J].同济大学学报(自然科学版),2020,48(6):788~795

复制
分享
文章指标
  • 点击次数:539
  • 下载次数: 1012
  • HTML阅读次数: 519
  • 引用次数: 0
历史
  • 收稿日期:2019-10-08
  • 最后修改日期:2020-05-16
  • 录用日期:2020-02-05
  • 在线发布日期: 2020-07-09
文章二维码