基于预测机制的装配作业重调度问题建模优化
CSTR:
作者:
作者单位:

同济大学 机械与能源工程学院,上海 201804

作者简介:

陆志强(1968—),男,教授,博士生导师,工学博士,主要研究方向为生产工程、物流系统建模与优化.E-mail:zhiqianglu@tongji.edu.cn

中图分类号:

TP29

基金项目:

国家自然科学基金(61473211,71171130)


Modeling and Optimization of Job Assembly Rescheduling Problem Based on Job Quality Prediction Mechanism
Author:
Affiliation:

School of Mechanical Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    飞机移动装配中因作业质量问题增加的修复作业会打乱装配计划并造成经济损失,为解决该问题提出了一种预测-重调度形式的闭环框架,该框架的前端利用质量相关部件衰退以及作业质量特性偏差的历史数据训练了作业质量预测模型,基于预测结果,重点针对后端建立了装配作业重调度模型并设计了改进型免疫算法(I-I-A)用于生成新的装配计划。数值实验部分从不同角度验证了I-I-A的有效性,同时也对所提闭环框架的性能优劣进行了对比分析。

    Abstract:

    Repair jobs resulting from poor assembly quality of jobs in the aircraft assembly process can disturb assembly scheduling plans and cause economic losses. This paper proposes a prediction-rescheduling closed-loop framework in order to solve this scheduling problem. In the front part of this framework, job quality prediction models are trained using historical data of quality-related components in deteriorations and quality characteristic deviations of jobs. Based on the prediction results of jobs, a rescheduling model is established in the later part of this framework and an improved-immune-algorithm (I-I-A) is designed to generate a new scheduling plan for the assembly line. The effectiveness of the I-I-A is verified from different aspects and the advantages and disadvantages of the performance of the closed-loop framework suggested in this paper is analyzed in comparison with other frameworks.

    参考文献
    [1] PANDA D , RAMTEKE M . Reactive scheduling of crude oil using structure adapted genetic algorithm under multiple uncertainties[J]. Computers & Chemical Engineering, 2018, 116: 333.
    [2] LIU J , QIAO F , YUMIN M A , et al. Novel slack-based robust scheduling rule for a semiconductor manufacturing system with uncertain processing time[J]. Frontiers of Engineering Management, 2018, 5(4):507.
    [3] KANG K , SUBRAMANIAM V . Integrated control policy of production and preventive maintenance for a deteriorating manufacturing system[J]. Computers & Industrial Engineering, 2018, 118:266.
    [4] LIU Q, MING D, CHEN F F. Single-machine-based joint optimization of predictive maintenance planning and production scheduling[J]. Robotics & Computer Integrated Manufacturing, 2018, 51:238.
    [5] SHAHKARAMI S , MUSUMECI F , CUGINI F , et al. Machine-learning-based soft-failure detection and identification in optical networks [C]// Optical Fiber Communication Conference. California: Optical Society of America, 2018:1-3.
    [6] CUI W , LU Z , LI C , et al. A proactive approach to solve integrated production scheduling and maintenance planning problem in flow shops[J]. Computers & Industrial Engineering, 2018, 115:342.
    [7] TAN W , ZHANG Q , SUN Y . Proactive scheduling optimization of emergency rescue based on hybrid genetic-tabu optimization algorithm [J]. Human Centered Computing, 2016, 9567: 400.
    [8] BRUNI M E , DI P P L , BERALDI P , et al. An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations [J]. Omega, 2016, 71:66.
    [9] QIAO F , MA Y M , ZHOU M C , et al. A novel rescheduling method for dynamic semiconductor manufacturing systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, PP(99):1.
    [10] CREEMERS Stefan. Minimizing the expected makespan of a project with stochastic activity durations under resource constraints [J]. Journal of Scheduling, 2015, 18(3):263.
    [11] RAHMANI D , RAMEZANIAN R . A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study [J]. Computers & Industrial Engineering, 2016, 98:360.
    [12] WANG L , LU Z . Proactive approach for production and condition-based maintenance integration problem in a deteriorating system [J]. Journal of Shanghai Jiaotong University, 2019, 24(4):500.
    [13] LU B, ZHOU X . Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration [J]. Reliability Engineering & System Safety, 2017, 168:116.
    [14] 田兆青. 轿车车身装配偏差流的状态空间建模方法及应用基础研究[D]. 上海:上海交通大学, 2008.
    [15] 孙涵, 杨普容, 成金华. 基于Matlab支持向量回归机的能源需求预测模型[J]. 系统工程理论与实践, 2011, 31(10):2001.
    [16] 周安阳, 戴青云, 王美林, 等. 一种改进的免疫算法在车间调度中的研究[J]. 中国制造业信息化, 2012, 41(19):16.
    [17] REN H , XU H , SUN S . Immune genetic algorithm for multi-objective flexible job-shop scheduling problem[C]// 2016 Chinese Control and Decision Conference (CCDC). NingXia: IEEE, 2016:2199-2203.
    [18] LAMBRECHTS O , DEMEULEMEESTER E , HERROELEN W . A tabu search procedure for developing robust predicitive project schedules[J]. International Journal of Production Economics, 2008, 111((2):493.
    [19] VONDER S V D , DEMEULEMEESTER E , HERROELEN W. A classification of predictive-reactive project scheduling procedures[J]. Journal of Scheduling, 2007, 10(3):195.
    [20] 陆志强, 胡鑫铭, 朱宏伟. 物料供给不确定环境下的飞机移动生产线动态调度方法[J]. 同济大学学报(自然科学版), 2018, 47(5):723.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆志强,方佳.基于预测机制的装配作业重调度问题建模优化[J].同济大学学报(自然科学版),2020,48(8):1188~1198

复制
分享
文章指标
  • 点击次数:333
  • 下载次数: 707
  • HTML阅读次数: 201
  • 引用次数: 0
历史
  • 收稿日期:2019-10-09
  • 在线发布日期: 2020-09-09
文章二维码