火灾作用下长期服役与新浇筑混凝土梁爆裂性能比较
CSTR:
作者:
作者单位:

中国矿业大学 力学与土木工程学院,江苏 徐州 221116

作者简介:

郭 震(1978—),男,副教授,工学博士,主要研究方向为结构防震减灾。E-mail:z.guo@cumt.edu.cn

中图分类号:

TU375.1

基金项目:

国家自然科学基金(51878656);徐州市重点研发计划(KC18220)


Comparison of Performance Between Long-Term Service and Fresh Concrete Beams Subjected to Fire
Author:
Affiliation:

School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对比分析了新浇筑钢筋混凝土梁和长期服役的钢筋混凝土梁火灾破坏特征和力学行为。试验采用恒载升温模式,并使用孔隙压力测量装置和非接触式光学应变采集仪获取了火灾下梁试件的孔隙压力、位移和应变发展等相关数据。试验结果表明,新浇筑钢筋混凝土梁的爆裂程度取决于混凝土含水量。由于环境作用,长期服役的钢筋混凝土梁含水量较低,其爆裂程度远小于新浇筑试件。然而,自然碳化造成长期服役钢筋混凝土梁强度降低,且存在较多微细裂缝,导致内部钢筋在火灾高温下失去隔热保护,从而使受力钢筋高温失效,混凝土梁发生脆性开裂。另外,在火灾高温和拉应力共同作用下,钢筋混凝土梁爆裂时机提前,而孔隙水压力峰值相应降低。

    Abstract:

    In this paper, the failure characteristics and mechanical behavior of newly-casted reinforced concrete beams and long-term service reinforced concrete beams in fire were compared and analyzed by considering the loads and heating mode. Meanwhile, the data such as pore pressure, displacement and strain development of beam specimens in fire were obtained by using the vapor pressure measuring device and a non-contact optical strain collector. The test results show that the spalling degree of newly-casted reinforced specimens depended on the water content. Due to the environmental action, the water content of long-term serviced beams was low, which made the spalling degree much smaller than that of new specimens. However, natural carbonation lead to the decrease in the strength of reinforced concrete beams in long service, and there are many fine cracks. This phenomenon makes the stressed steel bar fail more easily under the action of high temperature, which makes the concrete beam brittle and cracked. In addition, under the combined action of fire and tensile stress, the spalling time of reinforced concrete beam is advanced, while the peak value of vapor pressure decreases.

    参考文献
    [1] 石东升, 王海波, 刘曙光. 影响火灾下混凝土爆裂因素的试验研究[J]. 内蒙古工业大学学报(自然科学版), 2007,26(2): 129. DOI: 10.3969/j.issn.1001-5167-B.2007.02.010.
    [2] 傅宇方,黄玉龙,潘智生,等.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报,2006,9(3):323.DOI:10.3969/j.issn.1007-9629.2006.03.013.
    [3] MINDEGUIA J, PIMIENTA P, NOUMOWE A. Temperature, pore pressure and mass variation of concrete subjected to high temperature — Experimental and numerical discussion on spalling risk[J]. Cement and Concrete Research, 2010, 40(3): 477. DOI: 10.1016/j.cemconres.2009.10.011.
    [4] JU Y, LIU H B, TIAN K P. An investigation on micro pore structures and the vapor pressure mechanism of explosive spalling of RPC exposed to high temperature[J]. Science China-Technological Sciences, 2013, 56(2): 458. DOI: 10.1007/s11431-012-5110-4.
    [5] JANSSON R, BOSTROM L. Factors influencing fire spalling of self compacting concrete[J]. Materials and Structures, 2013, 46(10): 1683. DOI: 10.1617/s11527-012-0007-z.
    [6] HAN L H, TAN Q H, SONG T. Fire performance of steel reinforced concrete (SRC) structures[J]. Procedia Engineering, 2013, 62: 46. DOI: 10.1016/j.proeng.2013.08.043.
    [7] RAZAFINJATO R N, BEAUCOUR A, HENERT R, et al. High temperature behaviour of a wide petrographic range of siliceous and calcareous aggregates for concretes[J]. Construction and Building Materials, 2016, 123: 261. DOI: 10.1016/j.conbuildmat.2016.06.097.
    [8] XING Z, BEAUCOUR A, HEBERT R. Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature[J]. Cement and Concrete Research, 2011, 41(4): 392. DOI: 10.1016/j.cemconres.2011.01.005.
    [9] 李梦冉,杨超,余晓彦,等.碳化深度对混凝土强度影响的研究[J].湖北工业大学学报,2015,30(1):103. DOI:10.3969/j.issn.1003-4684.2015.01.027.
    [10] 孙彬,毛诗洋,王景贤,等.长观试件混凝土自然碳化与加速碳化的相关性试验研究[J].建筑结构,2019,49(9):111. DOI: 10.19701/j.jzjg.2019.09.019.
    [11] PHAN L T. Pore pressure and explosive spalling in concrete[J]. Materials and Structures, 2008, 41(10): 1623. DOI: 10.1617/s11527-008-9353-2.
    [12] BANGI M R, HORIGUCHI T. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41(11): 1150. DOI: 10.1016/j.cemconres.2011.07.001.
    [13] SHAH A H, SHARMA U K. Fire resistance and spalling performance of confined concrete columns[J]. Construction and Building Materials, 2017, 156: 161. DOI: 10.1016/j.conbuildmat.2017.08.167.
    [14] KODUR V K, MCGRATH R. Fire endurance of high strength concrete columns[J]. Fire Technology, 2003, 39(1): 73. DOI:10.1023/A:1021731327822.
    [15] 张国辉,李宗利,张林飞,等.干燥条件对混凝土强度影响试验研究[J].建筑材料学报,2015,18(5):840. DOI:10.3969/j.issn.1007-9629.2015.05.022.
    [16] KALIFA P, MENNETEAU F, QUENARD D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30(12): 1915.
    [17] LIU J, TAN K H, YAO Y. A new perspective on nature of fire-induced spalling in concrete[J]. Construction and Building Materials, 2018, 184: 581. DIU: 10.1016/j.conbuildmat.2018.06.204.
    [18] 郑文忠,侯晓萌,王英.混凝土及预应力混凝土结构抗火研究现状与展望[J].哈尔滨工业大学学报,2016,48(12):1.DOI:10.11918/j.issn.0367-6234.2016.12.002.
    [19] QIN R, HOU X M, GE C. Quantifying curing and composition effects on compressive and tensile strength of 160–250 MPa RPC[J]. Construction and Building Materials, 2020. DOI: 10.1016/j.conbuildmat.2019.117987.
    [20] ZHENG W Z, HOU X M, SHI D S, et al. Experimental study on concrete spalling in prestressed slabs subjected to fire[J]. Fire Safety Journal, 2010, 45(5): 283. DOI: 10.1016/j.firesaf.2010.06.001.
    [21] 陈泽世,凌平平,余婵娟,等.基于抗火性能的混杂纤维自密实混凝土设计(1)—蒸汽压力测试[J].混凝土,2016(2):121. DOI: 10.3969/j.issn.1002-3550.2016.02.030.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭震,王萌,宋隽,严旻,刘毅,王香仁.火灾作用下长期服役与新浇筑混凝土梁爆裂性能比较[J].同济大学学报(自然科学版),2020,48(8):1102~1112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-19
  • 在线发布日期: 2020-09-09
文章二维码