基于神经网络的受流器滑块材料载流磨损预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TF125

基金项目:


Prediction on Electrical Sliding Wear Behavior of Collector Shoe Material Based on Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对我国电气化铁路和磁浮交通对受流器滑块材料的性能要求,采用冷压烧结粉末冶金法制备了铜石墨材料,考察了该材料的载流磨损行为.结果表明:试样的磨损率随着试验载荷、速度、电流密度的增加而增大.载流条件下电流产生的电弧热是磨损率增加的主要因素.建立了摩擦磨损试验参数与磨损率之间的人工神经网络模型.以载荷、速度、电流密度作为网络的3个输入,以运行100km后试样的磨损率作为网络的1个输出,调试设计了一个3×3×1的反向传播(BP)神经网络.对神经网络的训练和检验表明该BP神经网络能够较好地预测影响因素对材料载流滑

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

.基于神经网络的受流器滑块材料载流磨损预测[J].同济大学学报(自然科学版),2008,36(10):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码