在Erdos和Rousseau关于给定边数的图中所含子图为二部图Kn,n的一个计数定理的基础上,给出了m-部图情形的结论,它在m=2时比已有结论有些许改进.设自然数n≥2,证明了一个含有q条边的m-部图中至多可以诱导出A(m,n,q)个完全m一部图Km(n)作为子图,其中A(m,n,q)=eq-(m-1)(m-1)!n(e2q-n2)mn/2(2m-2-m)(m-1)n/2.
孙玉芹. Erd(o)s和Rousseau的一个图论计数引理推广[J].同济大学学报(自然科学版),2008,36(7):