基于弱耦合求解方法的排水管网底泥输运模拟
CSTR:
作者:
作者单位:

1.武汉理工大学 土木工程与建筑学院,湖北 武汉430070;2.武汉市规划研究院,湖北 武汉430014

作者简介:

金 溪(1978—),男,副教授,工学博士,主要研究方向为城市给排水系统模拟及优化。E-mail:jinxi@whut.edu.cn

中图分类号:

TU992

基金项目:

国家自然科学基金(31670541)


Numerical Simulation of Sewer Sediments Transport in Drainage Pipe Network Based on Weak Coupling Approach
Author:
Affiliation:

1.School of Civil Engineering and Architecture, Wuhan University of Technology,Wuhan 430070, China;2.Wuhan Planning and Design Institute, Wuhan 430014, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过将SWMM(storm water management model)模型与底泥输运模型耦合计算实现对于排水管网底泥输运工况的模拟。利用该耦合求解方法,底泥输运过程对于管渠过流断面以及水流中污染物浓度的影响均可进行定量计算。耦合计算过程中全局时间步长由SWMM的时间步长确定,通过对底泥输运模型进行适当的调整使其适应SWMM时间步长,从而实现模拟的数值稳定性,避免了底泥输运模型出现过度沉积或过度冲刷引起数值不稳定的情况。该模拟方法通过2个案例进行了验证。通过案例的模拟结果可以看出该耦合过程可以给出稳定且合理的模拟结果,可以模拟管渠底泥的沉积及冲刷的过程以及其对于管渠过流断面及污染物浓度变化的影响。相较于单纯的SWMM模拟结果,耦合模型可以给出更加准确的模拟结果。

    Abstract:

    Sewer network hydraulic and quality simulation with consideration of sediment transport is conducted by coupling with the storm water management model (SWMM)with the sediment transport model (STM). Using this coupling model, the sediment load concentration and hydraulic cross section deformation of conduit caused by sediment transport in the sewer network can be quantitatively calculated. The global time step length of the coupling model is determined by the SWMM, and the STM is modified to adapt to the global time step so that the numerical stability in the simulation process can be achieved, and unsteady cases caused by over deposition and over flushing are avoided. The proposed coupling model was applied to two study cases, whose results show that this coupling model is stable and logical. The sediment flushing and deposition cycle and its impacts on load concentration and hydraulic cross section deformation of conduits can be simulated. Comparisons between simulation results and observed data indicate that the simulation results obtained by the proposed coupling process fit the observed data better than the simulation results without the coupling process.

    参考文献
    [1] MANNINA G, SCHELLART A N A, TAIT S, et al. Uncertainty in sewer sediment deposit modelling: Detailed vs simplified modelling approaches[J]. Physics and Chemistry of the Earth Parts A/B/C, 2012, 42/43/44:11.
    [2] ASHLEY R M, BERTRAND-KRAJEWSKI J L, HVITVED-JACOBSEN T, et al. Solids in sewers - Characteristics, effects and control of sewer solids and associated pollutants[M]. [s.l.]:IWA Publishing, 2004.
    [3] GREIFZU F, KRATZSCH C, FORGBER T, et al. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 10(1):30.
    [4] DHRUV M, ADITHYA T R, JULES V L, et al. A wall boundary condition for the simulation of a turbulent non-Newtonian domestic slurry in pipes[J]. Water, 2018, 10(2):124.
    [5] SECO I,SCHELLART A,GOMEZ Valentin, et al. Prediction of organic combined sewer sediment release and transport [J]. Journal of Hydraulic Engineering, 2018, 144(3):04018003.
    [6] HUDSON J, DAMGAARD J, DODD N, et al. Numerical approaches for 1D morphodynamic modelling[J]. Coastal Engineering, 2005, 52(8):691.
    [7] CORDIER S, LE M H, LUNA T M D. Bedload transport in shallow water models: Why splitting (may) fail, how hyperbolicity (can) help[J]. Advances in Water Resources, 2011, 34(8):980.
    [8] SERRANO-PACHECO A, MURILLO J, GARCIA-NAVARRO P. Finite volumes for 2D shallow-water flow with bed-load transport on unstructured grids[J]. Journal of Hydraulic Research, 2012, 50(2):154.
    [9] AUDUSSE E, BERTHON C, CHALONS C, et al. Sediment transport modelling : Relaxation schemes for Saint-Venant – Exner and three layer models[J]. Esaim Proceedings, 2013, 38:78.
    [10] COLOMBINI M, STOCCHINO A. Coupling or decoupling bed and flow dynamics: Fast and slow sediment waves at high Froude numbers[J]. Physics of Fluids, 2005, 17(3):521.
    [11] GAREGNANI G, ROSATTI G, BONAVENTURA L. Free surface flows over mobile bed: mathematical analysis and numerical modeling of coupled and decoupled approaches[J]. Communications in Applied and Industrial Mathematics, 2011(1):371.
    [12] CUNGE J A, HOLLY F M, VERWAY A. Practical aspects of computational river hydraulics[M].[s.l.]: Pitman, 1980.
    [13] CREACO E, BERTRAND-KRAJEWSKI J L. Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[J]. Journal of Hydraulic Research, 2009, 47(2):195.
    [14] CAMPISANO A, MODICA C, CREACO E, et al. A model for non-uniform sediment transport induced by flushing in sewer channels[J]. Water Research, 2019, 163(15):114903.
    [15] ROSSMAN L A. Storm water management model user's manual[M]. Cincinnati:[S.n.], 2009.
    [16] CHENG Nian-Sheng. Simplified settling velocity formula for sediment particle[J]. Journal of Hydraulic Engineering, 1997, 123(2):149.
    [17] 张丽春, 方红卫, 府仁寿. 一维非恒定非均匀泥沙数学模型研究[J]. 泥沙研究, 1998 (3):81.
    [18] 吴保生, 张小峰. 河流动力学[M]. 北京:中国水利水电出版社, 2010.
    [19] 付博文. 城市污水管道中污染物沉积特性研究[D].西安:西安建筑科技大学, 2016。
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金溪,王芳,张翔凌.基于弱耦合求解方法的排水管网底泥输运模拟[J].同济大学学报(自然科学版),2020,48(8):1179~1187

复制
分享
文章指标
  • 点击次数:344
  • 下载次数: 880
  • HTML阅读次数: 281
  • 引用次数: 0
历史
  • 收稿日期:2020-03-16
  • 在线发布日期: 2020-09-09
文章二维码