基于改进变邻域搜索算法的成型机分批重调度优化
作者:
作者单位:

1.同济大学 机械与能源工程学院,上海 200092;2.浙江衢州联州致冷剂有限公司,浙江 衢州 324000

作者简介:

徐立云(1973—),男,教授,博士生导师,工学博士,主要研究方向为智能制造、系统建模与优化、产品数字 化设计与管理等。 E-mail: Lyxu@tongji.edu.cn

通讯作者:

中图分类号:

TH186

基金项目:

2017年工信部智能制造新模式项目;国家自然科学基金面上项目(51975417);国家科技重大专项(2011ZX04015-022)


Molding Machines Batch Rescheduling Optimization Based on Improved Variable Neighborhood Search
Author:
Affiliation:

1.School of Mechanical Engineering, Tongji University, Shanghai 200092, China;2.Zhejiang Quzhou Lianzhou Refrigerant Co., Ltd., Quzhou 324000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对成型机故障和工单交货期提前两类事件,提出一种基于改进变邻域搜索算法的分批重调度方法,基于最小分批原则和非等量分批原则对工单进行批量划分,考虑重调度过程的稳定性与准时性,建立数学模型。设计一种改进的变邻域搜索算法(VNS),通过构建转移邻域和叠加邻域两种邻域结构,提高了搜索的收敛速度和寻优能力。最后以某磁性材料成型车间作为实例进行验证。结果表明,所提重调度方法能够在保证工单准时交付的基础上,提高成型机利用率,为工厂的实际生产决策提供参考。

    Abstract:

    This paper proposed a batch rescheduling method based on improved variable neighborhood search algorithm for two types of events which were molding machine failure and early delivery, and the orders were batch-divided based on the minimum batching principle and non-equal batching principle. Then, a rescheduling mathematical model was established considering the process stability and punctuality. After that, an improved variable neighborhood search algorithm was designed, which had a faster convergence speed and a stronger global optimization ability by constructing transition neighborhood and superposition neighborhood. Finally, a magnetic material molding workshop is taken as an example to verify the results. The results show that the proposed rescheduling method can ensure on-time delivery of order, raise the utilization rate of molding machine, and provide a reference for the production decision of factory.

    参考文献
    相似文献
    引证文献
引用本文

徐立云,程赞,宓宏,李爱平.基于改进变邻域搜索算法的成型机分批重调度优化[J].同济大学学报(自然科学版),2020,48(10):1460~1469

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-04
  • 出版日期:
文章二维码