电动车全铝框架式车身拓扑分析及参数化优化方法
CSTR:
作者:
作者单位:

1.吉林大学 汽车仿真与控制国家重点实验室,吉林 长春 130025;2.一汽解放有限公司商用车开发院,吉林 长春 130011

作者简介:

陈 鑫(1974—),男,教授,博士生导师,工学博士,主要研究方向为汽车车身设计轻量化以及汽车NVH分 析与控制。 E-mail: cx@jlu.edu.cn

通讯作者:

沈传亮(1978—),男,教授,博士生导师,工学博士,主要研究方向为车身智能化、汽车人性化与智能化。E-mail:shencl@jlu.edu.cn

中图分类号:

U463.82

基金项目:

国家重点研发计划(2016YFB0101601-7);国家自然科学基金(51875237);吉林省省校共建计划专项(SXGJSF2017-2-1-5)


Topological Analysis and a Parametric Optimization Method for Aluminum Alloy Frame Body of Electric Vehicle
Author:
Affiliation:

1.State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130025,China;2.China FAW Corproation Limited Jiefang Business Division Commercial Vehicle Development Institute, Changchun 130011,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对电动车全铝框架式车身优化时应当兼顾多种类型的型材和板材变量的问题,提出一种基于拓扑优化及隐式参数化模型的集成多目标优化方法。为了获得材料分布及载荷传递合理的框架式车身结构作为后续多目标优化的参考,概念设计阶段对原车身进行拓扑优化设计。基于拓扑优化结果建立车身隐式参数化模型,并利用参数化模型建立响应面近似模型以实现全铝框架式车身多目标优化的自动流程化。结果表明,全铝框架式车身在各项性能保持在目标范围的前提下减重11.9%。因此,基于拓扑优化及隐式参数化模型的集成多目标优化方法能够有效提高全铝框架式车身轻量化优化的效率和准确性。

    Abstract:

    An integrated multi-objective optimization method is proposed based on topology optimization and the implicit parameterized model to solve the problem that multiple types of section and plate variables should be considered when optimizing the aluminum alloy frame body of an electric vehicle. In order to obtain the frame body structure with a reasonable material distribution and load transfer as a reference for subsequent multi-objective optimization, the topology optimization design of the original body is conducted in the conceptual design stage. Then, the implicit parametric model of the vehicle body is built based on the topology optimization results and a response surface approximation model is established by using the parametric model to realize the automatic process of multi-objective optimization of aluminum alloy frame body. The results show that the all-aluminum frame body reduces weight by 11.9% while maintaining various performances within the target range. Therefore, the integrated multi-objective optimization method proposed based on topology optimization and the implicit parametric model can effectively improve the efficiency and accuracy of lightweight optimization of aluminum alloy frame body.

    参考文献
    [1] 李落星,周佳,张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48(18): 35.
    [2] 王登峰, 毛爱华, 牛妍妍,等. 基于拓扑优化的纯电动大客车车身骨架轻量化多目标优化设计[J]. 中国公路学报, 2017 (30): 136.
    [3] QIN Huan , GUO Yi , LIU Zijian , et al. Shape optimization of automotive body frame using an improved genetic algorithm optimizer[J]. Advances in Engineering Software, 2018, 121:235.
    [4] SKARKA W , PABIAN T , MICHA? S. Comparison of unibody and frame body versions of ultra efficient electric vehicle[J]. Springer, 2019. DOI:10.1007/s42452-019-0733-8.
    [5] 张苗莉, 任金东, 周姗姗. 基于以界面力度量的车身承载度的客车结构优化研究[J]. 汽车工程, 2016, 38(8): 929.
    [6] 梁礼光, 陈吉清, 杨越东,等. 概念设计阶段钢铝车身框架结构设计方法研究[J]. 机械设计与制造, 2018(7):40.
    [7] DUAN Libin , LI Guangyao , CHENG Aiguo , et al. Multi-objective system reliability-based optimization method for design of a fully parametric concept car body[J]. Engineering Optimization, 2016, 49(7):1247.
    [8] 陈鑫,王佳宁,沈传亮,等. 承载式车身结构局部改型的快速耦合参数化优化设计[J]. 同济大学学报(自然科学版), 2019, 47(8): 1189.
    [9] 苑锡妮,杨兵,曾渝. 5×××系铝合金汽车板研究进展[J]. 轻合金加工技术, 2018, 46(6): 8.
    [10] 王祝堂. 汽车用挤压铝材概览[J]. 轻合金加工技术, 2011, 39(3):1.
    [11] MüNSTER M, SCH?FFER M, KOPP G, et al. Modular body construction for an electric city vehicle[J]. ATZ Worldwide, 2017, 119(5): 16.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈鑫,赵康明,沈传亮,郑开铭,吕伟.电动车全铝框架式车身拓扑分析及参数化优化方法[J].同济大学学报(自然科学版),2020,48(10):1470~1477

复制
分享
文章指标
  • 点击次数:380
  • 下载次数: 121
  • HTML阅读次数: 353
  • 引用次数: 0
历史
  • 收稿日期:2020-01-03
  • 在线发布日期: 2020-11-04
文章二维码