求解一类隐式互补问题的加速模系矩阵分裂迭代法
CSTR:
作者:
作者单位:

1.同济大学 数学科学学院,上海 200092;2.嘉兴学院 数理与信息工程学院,浙江 嘉兴 314001

作者简介:

殷俊锋(1979—),男,教授,博士生导师,理学博士,主要研究方向为数值分析与科学计算。E-mail: yinjf@tongji.edu.cn

中图分类号:

O241.8

基金项目:

国家自然科学基金(11971354,11701221);国家留学基金委出国研修项目-地方合作项目(201808330668)


Accelerated Modulus-Based Matrix Splitting Iteration Methods for a Class of Implicit Complementarity Problems
Author:
Affiliation:

1.School of Mathematical Sciences, Tongji University, Shanghai 200092, China;2.College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    构造了求解一类隐式互补问题的加速模系矩阵分裂迭代法。理论分析建立了新方法在系数矩阵为H+-矩阵时的收敛性质。数值实验结果表明新方法是行之有效的,并且加速模系矩阵分裂迭代法在迭代步数和时间上均优于传统的模系矩阵分裂迭代法。

    Abstract:

    To solve a class of implicit complementarity problems, the accelerated modulus-based matrix splitting iteration methods are presented and analyzed. The convergence theory is established when the system matrix is an H+-matrix. The numerical experiments show that the proposed methods are efficient and better than the modulus-based matrix splitting iteration methods in aspects of iteration steps and CPU time.

    参考文献
    [1] FERRIS M C, PANG J S. Engineering and economic applications of complementarity problems[J]. SIAM Review, 1997, 39(4): 669.
    [2] PANG J S. The implicit complementarity problem[M]. New York: Academic Press,1981.
    [3] COTTLE R W, PANG J S, STONE R E. The linear complementarity problem[M]. San Diego: Academic Press, 2009.
    [4] BAI Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2010, 17(6): 917.
    [5] ZHANG L L. Two-step modulus-based matrix splitting iteration method for linear complementarity problems[J]. Numerical Algorithms, 2011, 57(1): 83.
    [6] LI W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Applied Mathematics Letters, 2013, 26(12): 1159.
    [7] ZHENG H, LI W, VONG S. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. Numerical Algorithms,2017, 74(1): 137.
    [8] BAI Z Z, ZHANG L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2013,20(3): 425.
    [9] XIA Z C, LI C L. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem[J]. Applied Mathematics and Computation, 2015,271(1): 34.
    [10] XIE S L, XU H R, ZENG J P. Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems[J]. Linear Algebra and Its Applications, 2016,494: 1
    [11] LI R, WANG Y, YIN J F. On the convergence of two-step modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems with H+-matrices[J]. Numerical Mathematics: Theory, Methods & Applications, 2018, 11(1):128.
    [12] 李蕊,殷俊锋. 两步模系矩阵分裂算法求解弱非线性互补问题[J].同济大学学报(自然科学版),2017, 45(2): 296.
    [13] 王艳,殷俊锋.李蕊. 松弛模系矩阵分裂迭代法求解一类非线性互补问题[J]. 同济大学学报(自然科学版), 2019, 47(2): 291.
    [14] LI R, YIN J F. Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems[J]. Numerical Algorithms, 2017, 75(2): 339.
    [15] HUANG B H, MA C F. Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems[J]. Computational and Applied Mathematics, 2018, 37: 3053.
    [16] HONG J T, LI C L. Modulus‐based matrix splitting iteration methods for a class of implicit complementarity problems[J]. Numerical Linear Algebra with Applications, 2016, 23(4): 629.
    [17] LI C L, HONG J T. Modulus-based synchronous multisplitting iteration methods for an implicit complementarity problem[J]. East Asian Journal on Applied Mathematics, 2017, 7(2): 363.
    [18] WANG A, CAO Y, SHI Q. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems[J]. Journal of Inequalities and Applications, 2018,2018(1): 1.
    [19] WANG Y, YIN J F, DOU Q Y, et al. Two-step modulus-based matrix splitting iteration methods for a class of implicit complementarity problems[J]. Numerical Mathematics: Theory, Methods & Applications, 2019, 12(3): 867.
    [20] CAO Y, WANG A. Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems[J]. Numerical Algorithms, 2019, 82(4): 1377.
    [21] ZHENG N, YIN J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem[J]. Numerical Algorithms, 2013, 64(2): 245.
    [22] ZHENG N, YIN J F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix[J]. Journal of Computational and Applied Mathematics, 2014, 260: 281.
    [23] FROMMER A, MAYER G. Convergence of relaxed parallel multisplitting methods[J]. Linear Algebra and its Applications, 1989, 119: 141.
    [24] VARGA R S. Iterative analysis[M]. Englewood Cliffs: Prentice Hall, 1962.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

殷俊锋,丁戬,李蕊.求解一类隐式互补问题的加速模系矩阵分裂迭代法[J].同济大学学报(自然科学版),2020,48(10):1478~1486

复制
分享
文章指标
  • 点击次数:469
  • 下载次数: 110
  • HTML阅读次数: 142
  • 引用次数: 0
历史
  • 收稿日期:2020-03-07
  • 在线发布日期: 2020-11-04
文章二维码