面向自动驾驶路测驾驶能力评估的避险脱离率模型
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.上海临港智能网联汽车研究中心有限公司,上海 201306;3.交通运输部公路科学研究院,北京 100088

作者简介:

涂辉招(1977—),男,教授,工学博士,主要研究方向为交通风险管理、自动驾驶汽车与智慧交通、交通行为 分析等。E-mail:huizhaotu@tongji.edu.cn

中图分类号:

U491

基金项目:

上海市科委重点项目(19DZ1209402)


A Risk-Avoiding Disengagement Frequency Model for Assessing Driving Ability of Autonomous Vehicles in Road Testing
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Lingang Intelligent Connected Vehicle Innovation Center Co., Ltd., Shanghai 201306, China;3.Research Institute of Highway of MOT, Beijing 100088, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    针对传统脱离率模型低估自动驾驶路测车辆驾驶能力问题,提出了避险脱离与非避险脱离概念,通过秩和检验确定脱离时长阈值,选取平均速度差、短时平均速度差、瞬时速度差为特征值,量化车辆脱离前后行为差异,利用无监督学习K-means算法辨别避险与非避险脱离类型,构建面向自动驾驶路测驾驶能力评估的避险脱离率模型。基于上海市城市道路和快速路两类场景路测数据,验证避险脱离率模型的合理性与有效性。结果表明,基于避险脱离率模型,自动驾驶路测车辆驾驶能力在城市道路与快速路场景中,分别比传统脱离率模型平均提升了4.8和7.3倍。

    Abstract:

    To fill the gap that the traditional autopilot disengagements (ADs) frequency model has underestimated the driving ability of autonomous vehicles in road testing, this paper first proposed the concepts of risk-avoiding disengagements and non-risk-avoiding disengagements and then determined the disengagement temporal threshold by using the nonparametric rank sum test. Three characteristic values including average speed difference (ASD), instantaneous speed difference (ISD), and short-term speed difference (SSD) were considered as the indicators to quantify the differences of the behavior of vehicles before and after disengagements. Thus, the K-means clustering algorithm in unsupervised learning was used to distinguish the two ADs types. The risk-avoiding disengagement frequency (RADF) model for assessing the driving ability of autonomous vehicles in road testing was finally created. Based on the empirical data covering scenarios of urban road and expressway in Shanghai, the RADF model is verified. The results show that based on the RADF model the driving ability of autonomous vehicles in road testing has averagely been increased by 4.8 and 7.3 times respectively in the urban road scenario and expressway scenario, compared with the traditional ADs frequency model.

    参考文献
    [1] 杨婕. 我国自动驾驶道路测试开展情况, 问题及建议[J]. 信息安全与通信保密, 2019(3): 31.
    [2] 张洁, 王之琛, 王琳琳. 数据, 配套, 立法三方面助推汽车自动驾驶发展[J]. 金融世界, 2018 (6): 112.
    [3] 北京智能车联产业创新中心. 北京市自动驾驶车辆道路测试报告(2019年)[R]. 北京: 北京智能车联产业创新中心,2019.
    [4] LV C, CAO D, ZHAO Y, et al. Analysis of autopilot disengagements occurring during autonomous vehicle testing[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 58.
    [5] FAVARò F, EURICH S, NADER N. Autonomous vehicles’ disengagements: Trends, triggers, and regulatory limitations[J]. Accident Analysis & Prevention, 2018, 110: 136.
    [6] NITSCHE P, MOCANU I, REINTHALER M. Requirements on tomorrow􀆳s road infrastructure for highly automated driving[C]//2014 International Conference on Connected Vehicles and Expo (ICCVE). Vienna: IEEE, 2014: 939-940.
    [7] WANG S, LI Z. Exploring causes and effects of automated vehicle disengagement using statistical modeling and classification tree based on field test data[J]. Accident Analysis & Prevention, 2019, 129: 44.
    [8] MOK B, JOHNS M, LEE KJ, et al. Emergency, automation off: unstructured transition timing for distracted drivers of automated vehicles[C]//2015 IEEE 18th international conference on intelligent transportation systems. Las Palmas: IEEE, 2015: 2458-2464.
    [9] GOLD C, DAMB?CK D, LORENZ L, et al. “Take over!” how long does it take to get the driver back into the loop?[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles: SAGE Publications Sage CA, 2013: 1938-1942.
    [10] WAN J, WU C. The effects of lead time of take-over request and nondriving tasks on taking-over control of automated vehicles[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(6): 582.
    [11] ZEEB K, BUCHNER A, SCHRAUF M. What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015, 78: 212.
    [12] 林庆峰, 王兆杰, 鲁光泉. 城市道路环境下自动驾驶车辆接管绩效分析[J]. 中国公路学报, 2019, 32(6): 240.
    [13] 钮建伟, 张雪梅, 孙一品, 等. 险情中驾驶人接管自动驾驶车辆的驾驶行为研究[J]. 中国公路学报, 2018, 31(6): 272.
    [14] BOGGS A M, ARVIN R, KHATTAK A J. Exploring the who, what, when, where, and why of automated vehicle disengagements[J]. Accident Analysis & Prevention, 2020, 136: 105406.
    [15] FAVARò FM, EURICH SO, NADER N. Analysis of disengagements in autonomous vehicle technology[C]//2018 Annual Reliability and Maintainability Symposium (RAMS). Reno: IEEE, 2018: 1-7.
    [16] 占亚娥. 加州《2019年自动驾驶脱离报告》出炉 自动驾驶谁玩的更溜?[R/OL]. [2020-02-27]. https://m.gasgoo.com/news/70159882.html.
    ZHAN Yae. California􀆳
    [17] MORGAN PL, ALFORD C, WILLIAMS C, et al. Manual takeover and handover of a simulated fully autonomous vehicle within urban and extra-urban settings[C]//International Conference on Applied Human Factors and Ergonomics. Los Angeles: Springer, 2017: 760-771.
    [18] WALCH M, LANGE K, BAUMANN M, et al. Autonomous driving: Investigating the feasibility of car-driver handover assistance[C]//Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. Nottingham, United Kingdom: Association for Computing Machinery, 2015: 11-18.
    [19] 韩永志. 统计学在理化检验中的应用 第六讲 正态分布及其检验(续)[J]. 理化检验(化学分册), 2000, 36(3): 138.
    [20] 林金官, 韦博成. 非线性Poisson-Gamma回归模型中存在偏大离差时离差参数的齐性检验[J]. 应用概率统计, 2003, 19(3): 277.
    [21] 王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题[J]. 控制与决策, 2012, 27(3):321.
    相似文献
    [1]孙涛,叶新铭.针对软件中2路并发行为完全覆盖的测试方法[J].重庆邮电大学学报(自然科学版),2014,26(6):727-736.
    [2]这一高23 cm、直径38 cm的自动吸尘器内装3块电脑芯片,带传感器50个,1s内最多可完成16次决策,其信息处理能力比美国宇航局两年前发射的“火星探路者”飞船负责向地球传输图像的组件还要强大。该吸尘器可按预编的程序,采取一种外螺旋方式自动对房间进行彻底清扫。它会自动避开家具、幼儿和宠物,以及象眼镜那么小的障碍物。戴森公司称,新型吸尘器另一特性是可使用充电电池,因而移动极为灵活。电池充电一次可工作0.5h,足以打扫几间房。另外,吸尘器可以45cm/s和25cm/s快、慢两档工作。当置于慢档时,该吸尘器只需11min就可清扫.无人操作的的吸法器等22则[J].应用科技,2000,27(1):42-46.
    [3]该产品是经过多年攻关研制推出的一种取代电镀业的高新技术产品,采用国产易购化工原料精制而成。无毒无味,属绿色环保产品,各种金属制品经过该品浸泡30~50min即可形成表面光亮如镜,永不生锈的效果,神奇般地把铁、五金等制品变成了"不锈钢",同时能保持金属制品的机械性能,提高硬度,抗腐蚀,耐磨损,无麻点,永不脱落,可广泛用于五金产品、机械、电子、模型及各类管材、仪表等行业。   生产该产品,小规模设备投资500~1 000元,现面向全国推广转让此技术,每县市1~2家普通转让1.5万元,省内独家15万元,来人可当面.铁能变成"不锈钢"等9则[J].应用科技,2000,27(3):37.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

涂辉招,崔航,鹿畅,李浩,刘建泉,侯德藻.面向自动驾驶路测驾驶能力评估的避险脱离率模型[J].同济大学学报(自然科学版),2020,48(11):1562~1570

复制
分享
文章指标
  • 点击次数:601
  • 下载次数: 399
  • HTML阅读次数: 297
  • 引用次数: 0
历史
  • 收稿日期:2020-04-16
  • 在线发布日期: 2020-12-01
文章二维码