混合梁刚构桥受力计算方法与合理结构体系研究
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.福建省高速公路集团有限公司,福建 福州350001

作者简介:

曾明根(1963—),男,教授级高工,主要研究方向为钢桥与组合桥梁。 E-mail: Zengmg@tongji.edu.cn

通讯作者:

苏庆田(1974—),男,教授,博士生导师,工学博士,主要研究方向为钢桥与组合桥梁。E-mail:sqt@mail.tongji.edu.cn

中图分类号:

U443.35

基金项目:

国家自然科学基金(51978501)


Mechanical Calculation and Rational Structural System of Hybrid Beam Rigid Frame Bridge
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Fujian Provincial Expressway Group Co. Ltd., Fuzhou 350001, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在传统混凝土刚构桥基础上把主跨跨中的一部分改为钢梁而形成的混合梁刚构桥有效实现了梁桥在跨度上的突破及结构性能的改善,成为非常有应用前景的一种桥梁结构形式,并在实际工程中越来越被广泛应用。为探究三跨钢-混凝土混合梁刚构桥结构体系的合理布置和受力性能的简化计算方法,推导了混合梁刚构桥在施工阶段及成桥阶段的简化力学模型,并通过有限元方法和实桥测试验证了简化力学模型的正确性。基于简化力学模型,以控制截面内力为目标函数,计算分析了边跨与中跨长度之比λ、钢梁长度与主跨长度之比μ(或结合段位置参数)对混合梁刚构桥受力性能的影响。研究结果表明,基于结构的合理受力性能,得到了λμ的合理取值范围,综合考虑桥梁施工和运营中的风险,建议λ取0.4、μ取0.4~0.5,可作为混合梁刚构桥的设计参考。

    Abstract:

    On the basis of traditional concrete rigid frame bridge, the hybrid beam rigid frame bridge formed by replacing a part of the main span with steel beam has effectively achieved a breakthrough in the span of the beam bridge and an improvement in structural performance. So, it has become a very promising bridge structure and has been more and more widely applied in actual engineering. In order to explore the reasonable arrangement and simplified calculation method of the mechanical performance of the three-span steel-concrete hybrid beam rigid frame bridge structure system, the simplified mechanical model during construction and completion was derived. The calculation precision of the model was verified by the finite element models and testing results of an actual project. Based on the model, taking the internal forces of the control sections as the objective functions, the effects of λ (the ratio of side-span and mid-span) and μ (the ratio of the steel beam length and main span length or the position parameter of the steel-concrete composite segment ) on the mechanical performance of the hybrid beam rigid frame bridge were calculated and analyzed. The research results show that based on the reasonable mechanical performance of the structure, the reasonable value range of λ and μ is obtained. Considering the risk in the construction and operation of the bridge, it is suggested that λ takes 0.4 and μ takes 0.4 ~ 0.5, which can be used as the design reference of the hybrid beam rigid frame bridge.

    表 4 不同λ的桥跨布置所对应的各截面弯矩值Table 4
    图1 安海湾大桥总体布置(单位: m)Fig.1 General layout of Anhaiwan Bridge (Unit: m)
    图2 简化模型Fig.2 Simplified model
    图3 最大悬臂状态Fig.3 Maximum cantilever state
    图4 单悬臂状态结构Fig.4 Single cantilever state
    图5 成桥状态结构Fig.5 Bridge in completion state
    图6 桥梁整体有限元模型Fig.6 Overall finite element model of the bridge
    图7 荷载试验主要工况加载方式(单位:m)Fig.7 Main load modes of the load test(Unit: m)
    图8 λ=0.30时控制截面弯矩随μ的变化图(单位: kN·m)Fig.8 Variation of bending moment of key section with μ when λ = 0.30(Unit: kN·m)
    图9 不同 λ下墩顶附近梁截面弯矩随μ的变化 (单位: kN·m)Fig.9 Variation of bending moment of beam near pier top with μ under different λ(Unit: kN·m)
    表 1 有限元模型与简化理论模型计算结果对比Table 1
    表 2 荷载试验与简化理论模型计算结果对比Table 2
    表 3 主梁在墩顶两侧弯矩平衡时的λ与μ值Table 3
    参考文献
    [1] 冯鹏程.连续刚构桥设计关键技术问题的探讨[J].桥梁建设, 2009(6):46.
    [2] WANG Jiejun, CHEN Min, YIN Canbin. Test and research of long-term stress variation of high-pier & long-span continuous rigid-frame bridge[J]. Advanced Materials Research, 2013, 639/640(1):269.
    [3] 刘玉擎.组合结构桥梁[M].北京:人民交通出版社, 2005.
    [4] 苏庆田,秦飞.新型混合梁桥结构体系及设计参数[J].同济大学学报(自然科学版), 2013, 41(6):799.
    [5] 邓文中,代彤.重庆石板坡长江大桥复线桥总体设计[J].桥梁建设, 2006(6):28.
    [6] 左智君.钢-混混合梁连续刚构桥桥跨关键参数及梁高优化研究[D].成都:西南交通大学, 2014.
    [7] 谢艳梅.混合梁连续刚构桥结构几何参数优化研究[D]. 成都:西南交通大学, 2013.
    [8] 苏庆田,李伟,文晔.温州瓯江大桥钢箱梁整体提升安装施工技术[J].桥梁建设, 2013, 43(4):110.
    [9] 李磊,王昌将,陈向阳,等.鱼山大桥通航孔桥钢箱梁设计关键技术[J].桥梁建设, 2019, 49(5):79.
    [10] 陈群,王灿东,梅刚.中山小榄水道混合梁刚构桥关键技术[J].公路, 2015, 60(7):132.
    [11] HE Jun, LIU Yuqing, PEI Bingzhi. Experimental study of the steel-concrete connection in hybrid cable-stayed bridges[J]. Journal of Performance of Constructed Facilities. 2014,28(3):559.
    [12] 范立础.桥梁工程(上)[M].北京:人民交通出版社, 2017.
    [13] 郑晶.A3标泉厦漳安海湾特大桥主桥荷载试验报告[R].福州:福建省交设工程试验检测有限公司,2020.
    [14] QIN Fengjiang, DI Jin, DAI Jie, et al. Study on rational position of joint section of steel-concrete hybrid girder bridge[J]. Advanced Materials Research, 2013,671/674(1):1007.
    [15] 代彤,郭兆祺,刘国祥.重庆石板坡长江大桥复线桥主跨的合龙[J].桥梁建设, 2006(6):33.
    [16] 王鹏程,曹水东,李红利,等.港珠澳大桥超大节段钢箱梁整体吊装安全监测技术[J].中外公路, 2017, 37(1):63.
    [17] 张永涛,周仁忠,高纪兵.崇启大桥大节段整体吊装技术研究[J].公路, 2011(10):82.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾明根,许桂修,林志平,陈德宝,苏庆田.混合梁刚构桥受力计算方法与合理结构体系研究[J].同济大学学报(自然科学版),2020,48(12):1687~1695

复制
分享
文章指标
  • 点击次数:686
  • 下载次数: 377
  • HTML阅读次数: 343
  • 引用次数: 0
历史
  • 收稿日期:2020-03-26
  • 在线发布日期: 2020-12-31
文章二维码