基于统一边界和梁格模型的整体式桥台桥梁分析
CSTR:
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.济南市市政工程设计研究院(集团)有限责任公司,山东 济南 250002

作者简介:

金永学(1996—),男,博士研究生,主要研究方向为混凝土桥梁结构分析。E-mail:1910330@tongji.edu.cn

通讯作者:

徐 栋(1966—),男,教授,博士生导师,工学博士,主要研究方向为混凝土桥梁结构分析。 E-mail:xu_dong@tongji.edu.cn

中图分类号:

U441


Analysis of an Integral Abutment Bridge Based on Unified Boundary Condition and Grillage Model
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Jinan Municipal Engineering Design & Research Institute (Group) Co., Ltd., Jinan 250002, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    取消伸缩缝及支座的整体式桥台桥梁可以避免伸缩缝的病害及对行车的影响。由于桥台处的上部结构与下部结构浇筑在一起,整体式桥台桥梁的上部结构受力受到下部结构乃至土体的影响,使其计算需要将上下部结构综合考虑,计算方法也更为复杂。提出一种思路,以实现上部结构在不同荷载作用组合下的验算与调整。以一座两跨的整体式桥台桥梁为依托工程,通过实体有限元模型在代表性工况下提取边界条件,施加到全桥的梁格模型中,完成整体式桥台桥梁的计算与设计,具体流程如下:在实体有限元模型中,建立简化的“单梁+单桩”模型,并采用以“m”法确定刚度的土弹簧模拟结构-土相互作用;计算模型整体升温下的梁端轴力和形心处线位移及跨中加载下梁端弯矩及角位移,换算成2个具有一定距离的线弹簧,作为边界条件施加在全桥的梁格模型上。在梁格模型中,得到全桥在多种工况下的内力及承载力结果,完成对整体式桥台桥梁的设计。在非岩石类地基中,当结构-土相互作用采用“m”法模拟时,简化手段与设计方法的可行性得到了验证。

    Abstract:

    Without expansion joints and bearings, integral abutment bridges can avoid the disease of expansion joints and the impact on driving. Since the superstructure and the substructure at the abutment are poured together, the force of the superstructure of integral abutment bridge is affected by the substructure and the soil, the calculation requires comprehensive consideration of the superstructure and the substructure, and the calculation method is more complex. The author proposes a new idea to realize the verification and adjustment of the superstructure under different load combinations. In this paper, a two-span integral abutment bridge is used as a supporting project, the boundary conditions are extracted under representative working conditions through a solid finite element model and applied to the grillage model of the full bridge, then we can complete the calculation and design of the integral abutment bridge, the specific process is as follows: In the solid finite element model, establish a simplified "single beam + single pile" model, and use the "m" method to determine the stiffness of the soil spring to simulate the structure-soil interaction; calculate the axial force and the linear displacement at the centroid of the beam end under the overall heating condition, and the bending moment and angular displacement at the beam end under mid-span loading condition, then convert them into two linear springs with a certain distance, which are applied to the grillage model of the full bridge as a boundary condition. In the grillage model, the internal force and bearing capacity of the full bridge under various working conditions are obtained, then the design of the integral abutment bridge is completed. In non-rock foundations, when the structure-soil interaction is simulated by the "m" method, the feasibility of the simplification and the design method has been verified.

    图1 1/2桥梁立面(单位:cm)Fig.1 The elevation of half bridge (unit: cm)
    图2 桥台位置处横断面(单位:cm)Fig.2 Cross section at abutment location (unit: cm)
    图3 桥台具体尺寸(单位:cm)Fig.3 Dimensions of the abutment (unit: cm)
    图4 调整前后的桩截面(单位:mm)Fig.4 The pile section before and after adjustment (unit: mm)
    图5 相同弯矩下的3种下部结构模型Fig.5 Three substructure models under the same bending moment
    图6 3种下部结构模型在相同弯矩下的桩身变形Fig.6 Pile deformation of three substructure models under the same bending moment
    图7 相同水平力下的3种下部结构模型Fig.7 Three substructure models under the same horizontal force
    图8 3种下部结构模型在相同水平力下的桩身变形Fig.8 Pile deformation of three substructure models under the same horizontal force
    图9 “单梁+单桩”模型Fig.9 The “single beam+ single pile” model
    图10 土弹簧布置Fig.10 Soil spring arrangement
    图11 置于梁端形心位置的角弹簧与线弹簧Fig.11 An angle spring and a wire spring placed at the centroid of the beam end
    图12 整体升温情况下的物理量Fig.12 Quantities under the condition of overall heating
    图13 单跨跨中加载情况下的物理量Fig.13 Quantities under single-span loading
    图14 线弹簧刚度求解Fig.14 Calculation of wire spring stiffness
    图15 梁格模型的边界条件Fig.15 Boundary condition of grillage model
    图16 梁格模型划分Fig.16 Division of grillage model
    图17 全桥梁格模型Fig.17 Grillage model of whole bridge
    图18 徐变作用下的结构弯矩Fig.18 Moment of structure under creep
    图19 整体温度作用下的结构弯矩Fig.19 Moment of structure under integral heating
    图20 基础沉降作用下的结构弯矩Fig.20 Moment of structure under settlement
    图21 承载能力极限状态的抗弯承载力Fig.21 Bending capacity in ultimate limit states
    参考文献
    引证文献
    引证文献 [0]
    [1]陈宝春,黄福云,薛俊青,罗小烨,庄一舟,刘永健,徐明,赵秋红,BRISEGHELLABruno.无伸缩缝桥梁研究综述[J].交通运输工程学报,2022,22(5):1-40.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金永学,徐栋,郑明万,贾栋.基于统一边界和梁格模型的整体式桥台桥梁分析[J].同济大学学报(自然科学版),2021,49(1):40~48

复制
分享
文章指标
  • 点击次数:525
  • 下载次数: 1086
  • HTML阅读次数: 273
  • 引用次数: 0
历史
  • 收稿日期:2020-06-04
  • 在线发布日期: 2021-02-26
文章二维码