地铁浮置板轨道过渡段参数对隧道和土体振动的影响
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室, 上海 201804;2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室, 上海 201804

作者简介:

张小会(1988—),男,助理教授,工学博士,主要研究方向为隧道-土体耦合动力分析。 E-mail:1988xiaohui@tongji.edu.cn

中图分类号:

U211.3

基金项目:

国家自然科学基金(5171101316)


Effect of Floating Slab Track Transition Section Parameters on Dynamic Responses of Subway Tunnel-Soil System
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究地铁车辆通过浮置板轨道过渡段时隧道和土体的动力响应规律,提出了时域高效计算的隧道-饱和土体半解析环状层单元,结合车辆-轨道动力学,建立了车辆-浮置板轨道过渡段-隧道-土体系统耦合动力计算方法,研究了浮置板轨道过渡段长度、钢弹簧刚度等参数对隧道振动加速度、土体正应力和孔隙水压力的影响。结果表明,过渡段参数设计需重点关注2个刚度突变位置的动力响应,采用钢弹簧刚度渐变方案时,3个动力响应指标分别降低60%、15%和25%。

    Abstract:

    To study the dynamic response of the tunnel and soil when the subway train passes the transition section of the floating slab track, this paper proposed a semi-analytical ring layered element for the efficient calculation of the tunnel-saturated soil vibration in time domain. Taking into consideration of the train-track model, the coupled dynamic model of the train-floating slab track transition section-tunnel-soil system was finally established. The effects of the parameters of the floating slab transition section (i.e., the length and the stiffness of the steel spring) on the tunnel acceleration, soil normal stress and pore water pressure were studied. The results show that the parameter design of the floating slab track transition section needs to focus the dynamic responses at the two positions of sudden changes in stiffness of the transition section. The scheme of the gradient in steel spring stiffness can reduce the three evaluation indexes of the dynamic response by 60%, 15% and 25% respectively.

    表 2 饱和土体参数Table 2
    表 1 隧道参数Table 1
    图1 车辆-过渡段-隧道-土体耦合动力分析模型Fig.1 Dynamic model of coupled train-track-tunnel-soil system
    图2 隧道-土体模型:模型划分、主方向和相应的位移分量Fig.2 Tunnel-saturated soil coupled model: model outline, principle directions, and corresponding displacement components
    图3 本文模型与PiP模型中隧道土体振动响应对比Fig.3 Comparison of vibration response in tunnel-soil system between proposed model and PiP model
    图4 地铁车辆通过浮置板轨道过渡段时产生的隧道底部垂向振动加速度Fig.4 Vertical acceleration of tunnel bottom when a subway train passes transition section of a floating slab track
    图5 地铁列车通过浮置板轨道过渡段时产生的土体正应力最大值分布Fig.5 Distribution of maximum soil normal stress generated when a subway train passes transition section of a floating slab track
    图6 地铁车辆通过浮置板轨道过渡段时产生的隧道底部土体孔隙水压力Fig.6 Pore water pressure generated below tunnel when a subway train passes transition section of a floating slab track
    图7 地铁隧道和土体的车致振动响应随浮置板过渡段长度的变化Fig.7 Variation of train-induced vibration responses of subway tunnel and soil with the length of floating slab transition section
    图8 地铁隧道和土体的车致振动响应随浮置板过渡段内钢弹簧支撑刚度的变化Fig.8 Variation of train-induced vibration responses of subway tunnel and soil with stiffness of steel springs in floating slab transition section
    图9 地铁隧道和土体的车致振动响应随浮置板过渡段支撑刚度渐变方案变化Fig.9 Variation of train-induced vibration responses of subway tunnel and soil with gradual change of stiffness in floating slab transition section
    表 3 过渡段钢弹簧刚度渐变方案Table 3
    参考文献
    相似文献
    引证文献
引用本文

张小会,张泽宇,狄宏规,何超.地铁浮置板轨道过渡段参数对隧道和土体振动的影响[J].同济大学学报(自然科学版),2021,49(1):67~75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-10
  • 在线发布日期: 2021-02-26
文章二维码