车用多堆燃料电池系统能量管理与控制策略
CSTR:
作者:
作者单位:

1.同济大学 汽车学院,上海 201804;2.同济大学 中德学院,上海 201804

作者简介:

周 苏(1961—),男,教授,博士生导师,工学博士,主要研究方向为新型车辆动力系统、燃料电池系统建模、仿真及控制。E-mail:suzhou@tongji.edu.cn

中图分类号:

TK91


Energy Management and Control Strategy of Multi-Stack Fuel Cell System for Automotive Applications
Author:
Affiliation:

1.College of Automotive Studies, Tongji University, Shanghai 201804,China;2.Chinesisch-Deutsches Hochschulkolleg Hochschulkolleg, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对单堆燃料电池系统的输出功率、效率和寿命问题,对车用多堆燃料电池(multi-stack fuel cell, MFC)系统的能量管理策略(energy management strategy, EMS)与控制策略进行研究。提出了多级能量管理策略,其中第一级EMS基于工况对MFC系统与动力电池系统间的能量进行自适应分配,第二级EMS引入兼顾效率和寿命的目标优化函数,优化分配每个电堆的功率输出。研究结果表明,在满足同一电功率负载工况需求条件下,与单堆燃料电池系统相比较,MFC系统的燃料经济性可提高约4%,系统寿命性能也有所改善。

    Abstract:

    To solve the problems of low output efficiency and short life of single-stack fuel cell systems, the energy management strategy (EMS) and control strategy of the multi-stack fuel cell (MFC) system for vehicles were studied in this paper. A multi-level EMS was proposed, in which the first-level EMS adaptively distributed energy between the MFC system and the power battery system based on working conditions, and the second-level EMS used an objective optimization function that took into account efficiency and life to optimize the distribution of each power output of the stack. The results show that compared with the single-stack fuel cell system, the fuel economy of the MFC system can be increased by 4% and the life performance of the MFC system can also be improved.

    表 3 NYCC工况下优化前后参数比较Table 3
    表 5 HWFET工况下优化前后参数比较Table 5
    表 4 UDDS工况下优化前后参数比较Table 4
    表 2 功率跟随型控制策略中的关键控制参数Table 2
    图1 整车仿真模型架构Fig.1 Architecture of vehicle simulation model
    图2 包含MFC的燃料电池汽车二级能量管理结构Fig.2 Principle of multilevel energy management strategy
    图3 3种典型工况Fig.3 Three typical driving cycles
    图4 PCA降维结果Fig.4 Results of PCA dimensionality reduction
    图5 ELM算法网络结构Fig.5 Structure of ELM algorithmic network
    图6 功率跟随型策略原理Fig.6 Principle of power following strategy
    图7 RUL与输出功率的近似关系曲线Fig.7 Approximate relation curve between RUL and output power
    图8 仿真目标车速和实际车速Fig.8 Simulated target speed and actual speed
    图9 动力电池SOC变化曲线Fig.9 SOC curve of power battery
    图10 工况识别结果Fig.10 Results of driving cycle identification
    图11 EMS2三种功率分配策略的MFC系统效率曲线Fig.11 Efficiency curves of MFC system based on EMS2 three kinds of power allocation strategies
    图12 2种燃料电池系统累计氢耗对比Fig.12 Comparison of cumulative hydrogen consumption of two fuel cell systems
    图13 2个15 kW电堆的输出功率-RUL曲线Fig.13 Output power-RUL curves of two 15kW stacks
    图14 不同寿命因素权重下的目标优化函数Fig.14 Objective optimization function at different life factor weights
    参考文献
    相似文献
    引证文献
引用本文

周苏,王克勇,文泽军,张岗.车用多堆燃料电池系统能量管理与控制策略[J].同济大学学报(自然科学版),2021,49(1):107~115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-25
  • 在线发布日期: 2021-02-26
文章二维码